XE: ENGINEERING SCIENCES

Duration : Three Hours

Maximum Marks : 150

Read the following instructions carefully

- This question paper contains 64 printed pages including pages for rough work. Please check all pages and report discrepancy, if any.
- Write your registration number, your name and name of the examination centre at the specified locations on the right half of the ORS.
- Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 4. All the questions in this question paper are of objective type.
- 5. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as a wrong answer.
- This question paper contains nine sections as listed below. <u>Section A is compulsory</u>. Choose two
 more sections from the remaining sections B through I.

Section	Page	Section	Page
A. Engineering Mathematics	02	F. Solid Mechanics	Page 35
B. Computational Science	06	G. Thermodynamics	
C. Electrical Sciences	13	H. Polymer Science and Engineering	44
D. Fluid Mechanics	22	I . Food Technology	50
E. Materials Science	30	2 1 2 Cod 1 Comology	55

Using HB pencil, mark the sections you have chosen by darkening the appropriate bubbles on the left hand side of the Objective Response Sheet (ORS) provided. Make sure you have correctly bubbled the sections you have chosen. ORS will not be evaluated if this information is NOT marked.

- The XE Engineering Mathematics section (A), which is compulsory, carries 30 marks. Questions 1 through 6 are 1-mark questions, and questions 7 through 18 are 2-mark questions.
- 8. Each of the other XE sections (B through I) carry 60 marks. Questions 1 through 8 are 1-mark questions, questions 9 through 34 are 2-mark questions. Questions 29 and 30 are a set of common data questions. The question pairs (31, 32) and (33, 34) are questions with linked answers. The answer to the second question of the above pairs will depend on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
- Un-attempted questions will carry zero marks.

10. NEGATIVE MARKING:

(Section A): For Q.1 to Q.6, 0.25 mark will be deducted for each wrong answer. For Q.7 to Q.18, 0.5 mark will be deducted for each wrong answer.

(Sections B through I): For Q.1 to Q.8, 0.25 mark will be deducted for each wrong answer. For Q.9 to Q.30, 0.5 mark will be deducted for each wrong answer. For the pairs of questions with linked answers, there will be negative marks only for wrong answer to the first question, i.e. for Q.31 and Q.33, 0.5 mark will be deducted for each wrong answer. There is no negative marking for Q.32 and Q.34.

- 11. Calculator without data connectivity is allowed in the examination hall.
- 12. Charts, graph sheets and tables are NOT allowed in the examination hall.
- Rough work can be done on the question paper itself. Additional blank pages are given at the end of the question paper for rough work.

A: ENGINEERING MATHEMATICS (Compulsory)

Q. 1 - Q. 6 carry one mark each.

- Q.1 If the characteristic equation of a 3×3 matrix is $\lambda^3 \lambda^2 + \lambda 1 = 0$, then the matrix should be
 - (A) Hermitian
 - (B) unitary
 - (C) skew symmetric
 - (D) identity
- Q.2 $\lim_{(x,y)\to(0,0)} \frac{x^4 + xy}{x^3 y^3}$ is
 - (A) (
 - (B)
 - (C) -1
 - (D) does not exist
 - Q.3 If f(z) = u + iv is an analytic function and $u v = (x y)^3 + kxy(x y)$, then k is
 - (A) 2
 - (B) 4
 - (C) 6
 - (D) 8
- Q.4 The directional derivative at the point P(1,2,3) to the surface

 $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 3$ in the direction of the vector \overrightarrow{OP} , where O denotes the origin, is

- (A) (
- (B) $\frac{2}{\sqrt{14}}$
- (C) $\frac{3}{\sqrt{14}}$
- (D) $\frac{6}{\sqrt{14}}$
- Q.5 If the solution of the differential equation

$$\frac{dy}{dx} + P(x)y = xy^3$$

is
$$y^2(1+ce^{x^2})=1$$
,

c being an arbitrary constant, then P(x) is

- (A) x
- (B) $\frac{x}{2}$
- (C) x
- (D) 2x

$$ax + by + a^2 = 0$$

$$bx + ay - b^2 = 0$$

$$x + y + a - b = 0$$

- (A) admits unique solution if $a = b \neq 0$
- (B) admits unique solution if $a = -b \neq 0$
- (C) admits unique solution if a = b = 0
- (D) does not admit unique solution

Q. 7 to Q.18 carry two marks each.

Q.7 The matrix

$$\begin{bmatrix} 1 & 0 & \sin \theta \\ 0 & 1 & m \\ n & 0 & \cos \theta \end{bmatrix}$$

is orthogonal, if

(A)
$$l = -\sin\theta$$
, $m = -\cos\theta$, $n = 0$

(B)
$$l = -\sin\theta$$
, $m = 0$, $n = \cos\theta$

(C)
$$l = \cos \theta$$
, $m = \sin \theta$, $n = 0$

(D)
$$l = -\cos\theta$$
, $m = 0$, $n = \sin\theta$

Q.8 The radius of convergence of the real power series

$$\sum_{m=0}^{\infty} \frac{(m!)^2}{(2m+1)!} x^m \text{ is}$$

- (A) 4
- (B) 3
- (C) 2
- (D) 1

Q.9 The value of

$$\left(\int_{0}^{\frac{\pi}{2}} (\sin \theta)^{3/4} d\theta\right) \times \left(\int_{0}^{\frac{\pi}{2}} (\sin \theta)^{-3/4} d\theta\right)$$

is

(A)
$$\frac{2\pi}{3}(\sqrt{2}+1)$$

(B)
$$\frac{2\pi}{3}(\sqrt{2}-1)$$

(C)
$$\frac{\pi}{2}\sqrt{3}$$

(D)
$$-\frac{\pi}{2}\sqrt{3}$$

Q.10 If $f(z) = y(1+x^2) + x^2 + i(y^2 + 2y)x$ is differentiable at a point $z = z_0$, then $f'(z_0)$ is

- (A) 0
- (B) 1
- (C)
- (D) -i

Q.11 The value of the integral

$$\oint_{|z|=2} \frac{e^{1/z}}{(z-1)^2} dz$$

- is
- (A) 0
- (B) $(2e\pi)i$
- (C) (4eπ)i
- (D) (4π)i

Q.12 The absolute value of the integral

$$\oint_C (-zdx + xdy + ydz),$$

where c is the curve obtained by the intersection of $x^2 + y^2 = a^2$, a > 0 and y = z, is

- (A) $\frac{\pi a^2}{\sqrt{2}}$
- (B) $\frac{\pi a^2}{\sqrt{3}}$
- (C) $\pi a^2 \sqrt{2}$
- (D) $2\pi a^2$

Q.13 One of the values of

$$\frac{1}{(4x^2D^2 + 8xD + 1)}(\ln x) \text{ where } D = \frac{d}{dx},$$

- is
- (A) $\ln x + 4$
- (B) $\ln x 4$
- (C) $4 \ln x 4$
- (D) $4 \ln x + 4$

Q.14 A particular integral of the differential equation

$$\frac{d^2y}{dx^2} - y = \sec h \ x$$

- is
- (A) $-(\cosh x)(\ln \cosh x) + x \sinh x$
- (B) $-(\sinh x)(\ln \cosh x) + x \cosh x$
- (C) $(\cosh x) (\ln \sinh x) + x \sinh x$
- (D) $(\sinh x) (\ln \cosh x) x \cosh x$

Q.15 If u = u(x, t) is such that

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}, \quad 0 \le x \le \pi, \quad t \ge 0,$$

$$u(0,t)=u(\pi,t)=0,$$

$$u(x,0) = 0,$$

$$\frac{\partial u}{\partial t}(x,0) = \sin x,$$

then
$$u\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$$
 is

(A)
$$\frac{3}{4}$$

(C)
$$\frac{\sqrt{3}}{4}$$

(D)
$$\frac{\sqrt{3}}{8}$$

Q.16 The two lines of regression of the variables x and y are 4x + 2.4y = 20 and 1.6x + 4y = 12.

- The coefficient of correlation between x and y is
- (A) 0.49
- (B) -0.49
- (C) 0.35
- (D) 0.35

Q.17 While solving the initial value problem

$$\frac{dy}{dx} + ky = 0, \quad y(0) = 1$$

at x = h by fourth order Runge-Kutta method, the expression for k_3 is

(A)
$$-kh + \frac{(kh)^2}{2!} - \frac{(kh)^3}{3!}$$

(B)
$$-kh + \frac{(kh)^2}{2} - \frac{(kh)^3}{3}$$

(C)
$$-kh + \frac{(kh)^2}{2} - \frac{(kh)^3}{4}$$

(D)
$$-k(1+\frac{h}{2}-\frac{h^2}{3})$$

Q.18 On solving the system of equations

$$4x + z = 5$$

$$x + 2y + 3z = 1$$

$$-y-4z=3,$$

by LU - decomposition with $u_{ii} = 1$ for i = 1,2,3; the values of u_{23} and l_{33} are respectively

- (A) 1.375 and -4.250
- (B) 2.750 and -3.625
- (C) 1.375 and -2.625
- (D) 2.750 and -4.250

B: COMPUTATIONAL SCIENCE

Q. 1 - Q. 8 carry one mark each.

Q.1	Which one of the fol	llowing is not a physical	component of a comput	er?
	(A) CPU (C) Assembler		(B) RAM (D) Mother Board	
Q.2	A number whose rep value of the base b	presentation in base b is b	54, is equal to 100 in the	e decimal representation. The
	(A) 4	(B) 8	(C) 12	(D) 16
Q.3	Evaluation of the in $\int_{1}^{2} \frac{dx}{\sqrt{1+x^2}}$ using 2 segment training 2.	tegral pezoidal rule with equal	intervals gives the resul	
	(A) 0.566	(B) 0.564	(C) 0.562 .	(D) 0.560
Q.4	A continuous functi number of simple re	ion $f(x)$ defined in the pots of the equation $f(x)$	interval $[a,b]$ is such that $b = 0$ in this interval is	that $f(a)f(b) < 0$. A possible
	(A) 0	(B) 1	(C) 2	(D) 4
Q.5		expanded about the pointry to approximate e^x to a		ynomial $P_n(x)$ of degree n . The $[0,0.5]$ is
	(A) 5	(B) 6	(C) 7	(D) 8
Q.6	The eigenvalues of	the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ are	o Joden and X-man	
	(A) 1,-1 (C) 1,1		(B) <i>i,i</i> (D) <i>i,-i</i>	
Q.7	Consider the follow	wing code segment in Fo	rtran:	
	REAL::	RAMETER:: X=10.0 RESULT = X/Y+Y*Z**2	, Y=2.0, Z=5.0	
	The value of the re	esult when this code segn	nent is executed, is	
	(A) 0.098 (C) 55.0		(B) 0.192 (D) 105.0	
Q.8	The value of the in	ntegral $\int_{1}^{2} \frac{dx}{x}$ obtained by	by using Simpson's 1/3	rule, with 3 points, is
	(A) 0.694	(B) 0.693	(C) 0.692	(D) 0.691

Q. 9 to Q.30 carry two marks each.

- 0.9 The hypotenuse c and a side b of a right triangle are found by measurement to be 13 cm and 5 cm respectively. The possible error in the measurement of the hypotenuse is 0.2 cm and that in the side b is 0.1 cm. The maximum possible error (in cm) in the calculation of the third side is
 - (A) 0.26
- (B) 0.22
- (C) 0.17
- One of the eigenvalues of a 3×3 matrix M is 3. If the determinant of the matrix M is 24 and the trace is 9, then the smallest eigenvalue of the matrix M^{-1} is
 - (A) 1/8
- (B) 1/4
- (D) 1/2

A quadrature formula is given by Q.11

$$\int_{0}^{1} f(x)dx = pf(0) + qf(0.5) + rf(1)$$

where the coefficients p, q, and r are determined by comparing the right hand side of the above formula with the exact value of the integral for a quadratic polynomial. The formula corresponds to

- (A) Two segment trapezoidal rule
- (B) One segment trapezoidal rule
- (C) Simpson's 3/8 rule
- (D) Simpson's 1/3 rule
- Q.12 The set of simultaneous equations

$$4x - y = 15$$

$$x + 5y = 9$$

is to be solved using Jacobi's iterative method. Starting with the initial values x = 2, y = 2, the values of x and y after two iterations are, respectively,

(A) 4.25, 0.95

(B) 4.25, 1.4

(C) 4.1, 0.95

- (D) 4.1, 1.4
- The lower triangular matrix L in the LU factorization of the matrix

$$\begin{pmatrix} 25 & 5 & 4 \\ 10 & 8 & 16 \\ 8 & 10 & 22 \end{pmatrix} \text{ is written as } \begin{pmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{pmatrix}. \text{ The element } L_{32} \text{ is }$$

- (A) 1.0
- (B) 1.4
- (C) 0.4
- (D) 0.32
- Q.14 For a function f(x) whose second derivative f''(x) has a maximum value 12 in the interval
 - [0,1]. The number of segments required to integrate $\int f(x)dx$ with an accuracy of 0.0001 using

trapezoidal rule is

- (A) 10
- (B) 12
- (C) 100 (D) 1000
- Q.15 An approximate solution of the equation $x^3 - 3x + 1 = 0$ is 0.347296. Which of the following iterating functions will converge most rapidly to this root?
 - (A) $x_{n+1} = \frac{1}{(3-x^2)}$

(B) $x_{n+1} = \frac{1}{3} (x_n^3 + 1)$

(C) $x_{n+1} = \frac{1}{5} (x_n^3 + 2x_n + 1)$

(D) $x_{n+1} = \frac{1}{27} (10x_n^3 - 3x_n + 10)$

- A real root of the equation $x^3 2x 5 = 0$ lies between x = 2 and x = 3. The location of the root obtained after the second iteration using the method of false position is
 - (A) 2.081
- (B) 2.061
- (C) 2.059
- (D) 2.041
- The solution of the first order differential equation ($0 \le x < 1$) 0.17

$$\frac{dy}{dx} - y^2 = 0 \quad \text{with} \quad y(0) = 1 \quad \text{is}$$

(A) $\frac{1}{1+x}$

(B) $\frac{1}{1-x}$

(C) $\frac{2}{2+x}$

(D) $\frac{x^3}{3} + 1$

For the initial value problem 0.18

 $\frac{dy}{dx} + y = 0$, y(0) = 1, y_1 is the computed value of y at x = 0.2 obtained by using Euler's method with step size h = 0.1. Then,

(A) $y_1 < e^{-0.2}$

(B) $e^{-0.2} < y_1 < 1$ (D) $y_1 = e^{-0.2}$

(C) $1 < y_1$

- Consider the initial value problem 0.19

$$\frac{dy}{dx} = y + x \text{ with } y(0) = 2.$$

The value of y(0.1) obtained using the fourth order Runge-Kutta method with step size h = 0.1 is

- (A) 2.20000
- (B) 2.21500
- (C) 2.21551
- (D) 2.21576

The following table gives a function f(x) vs xQ.20

Y	0	1	2	3	4
f(x)	1.0	3.7	6.5	9.3	12.1

The best fit of a straight line for the above data points, using a least square error method is

(A) 2.75x + 0.55

(B) 2.80x + 0.80

(C) 3.10x + 0.85

- (D) 2.78x + 0.96
- Consider the following part of a Fortran 90 function 0.21

INTEGER FUNCTION RESULT(X)

INTEGER:: X

VALUE =1

IF (X == 0) EXIT

TERM = MOD (X, 10)VALUE = VALUE*TERM

X = X/10

RESULT = VALUE

END FUNCTION RESULT

If the above function is called with an integer X=123, the value returned by the function will be

- (A) 0
- (B) 6
- (C) 9
- (D) 321

Q.22 A portion of a Fortran 90 program is reproduced below:

PROGRAM CHECK_CYCLE

DO I =1, 10, 2

IF (MOD(I, 3) == 0) CYCLE

PRINT *, I

END DO

END PROGRAM CHECK_CYCLE

The result displayed by the program is

- (A) 1 5 7
- (B) 1 3 5
- (C) 1 3 7
- (D) 3 5 7

Q.23 (P), (Q), (R) and (S) are separate segments of Fortran 90 code.

- (P) IF (A > B) P=Q
- (Q) SUBROUTINE SWAP(A,B)
 INTEGER, INTENT(IN):: A, B
 TEMP = A
 A = B
 B = TEMP
 END SUBROUTINE SWAP
- (R) IF (A /= B) X = Y-Z ELSE X=Y+Z ENDIF
- (S) DO I = 1, N, 3 C(I) = A(I) + B(I)END DO

Which segments have syntax errors?

- (A) P, Q
- (B) Q, R
- (C) R, S
- (D) P,S

Q.24 A Fortran-90 subroutine for Gauss-Siedel Method to solve a set of N simultaneous equations [A][X]=[C] is given below.

```
SUBROUTINE SIEDEL(A, C, X, N, IMAX)

REAL: SUM

REAL, DIMENSION(N,N):: A

REAL, DIMENSION(N):: C, X

DO K = 1, IMAX

DO I = 1, N

SUM = 0.0

DO J = 1, N

IF ( I /= J ) THEN

SUM = SUM+A(I,J)*X(J)

ENDIF

ENDDO

******

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

END SUBROUTINE SIEDEL
```

The missing statement in the program, indicated by ******, is

```
(A) \times (I) = C(I) + SUM

(B) \times (I) = C(I) - SUM

(C) \times (I) = (C(I) + SUM) / A(I,I)

(D) \times (I) = (C(I) - SUM) / A(I,I)
```

Q.25 What is the result of the following C program?

```
int main()
{
    int i, sum=0;
    for ( i = 0; i < 25; i++ ) {
        if ( i > 10 ) continue;
        sum += i;
    }
    printf("%d\n", sum);
    return 1;
}

(A) 25
    (B) 45
    (C) 55
    (D) 325
```

Q.26 Consider the following C code.

```
int x = 1, y = 5, z; z = x++<<--y;
```

The values of x,y and z after the execution are

(A) 2, 4, 16

XE

- (B) 2, 4, 32
- (C) 2, 4, 64
- (D) 1, 5, 32
- Q.27 A two dimensional array is declared as int num[3][3]. Then the result of the expression *(num+1) is
 - (A) The value of num[1][0]
 - (B) The value of num[0][1]
 - (C) The address of num[1][0]
 - (D) The address of num[0][1]

10/64

Q.28 A C function named func is defined as follows:

```
int func(int a, int b) {
   if ( (a == 1) | | (b == 0) | | (a == b) ) return 1;
   return func(a-1,b) + func(a-1,b-1);
}
```

What is the result of func (4,2)?

- (A) 12
- (B) 6
- (C) 3
- (D) 1

Common Data Questions

Common Data for Questions 29 and 30:

The following table gives the values of a function f at three discrete points.

X	0.5	0.6	0.7
f(x)	0.4794	0.5646	0.6442

- Q.29 The value of f'(x) at x = 0.5 accurate upto two decimal places, is
 - (A) 0.82

(B) 0.85

(C) 0.88

- D) 0.91
- Q.30 The value of f(x) at x = 0.55 obtained using Newton's interpolation formula, is
 - (A) 0.5626

(B) 0.5227

(C) 0.4847

(D) 0.4749

Linked Answer Questions: Q.31 to Q.34 carry two marks each.

Statement for Linked Answer Questions 31 and 32:

A modified Newton-Raphson method is used to find the roots of an equation f(x) = 0 which has multiple zeros at some point x = p in the interval [a,b]. If the multiplicity M of the root is known in advance, an iterative procedure for determining p is given by

$$p_{k+1} = p_k - M \frac{f(p_k)}{f'(p_k)}$$
 for $k = 0, 1, 2, ...$

- Q.31 The equation $f(x) = x^3 1.8x^2 1.35x + 2.7 = 0$ is known to have a multiple root in the interval [1, 2]. Starting with an initial guess $x_0 = 1.0$ in modified Newton-Raphson method, the root, correct up to three decimal places, is
 - (A) 1.500

(B) 1.200

(C) 1.578

- (D) 1.495
- Q.32 The root of the derivative of f(x) in the same interval is
 - (A) 1.500

(B) 1.200

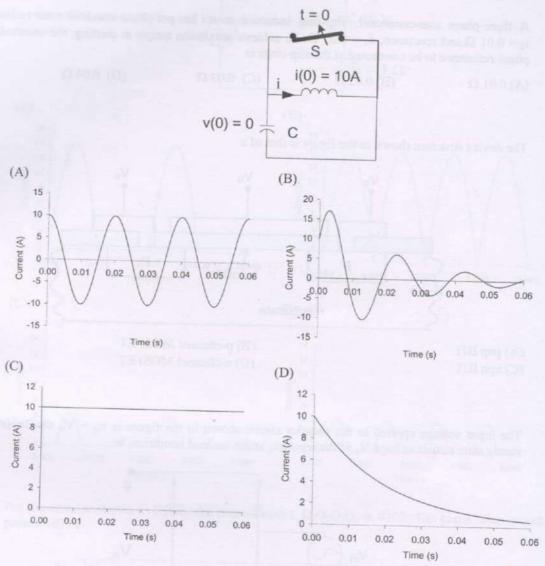
(C) 1.578

(D) 1.495

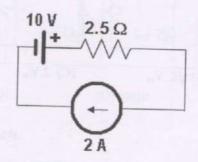
Statement for Linked Answer Questions 33 and 34:

The values of a function f(x) at four discrete points are as follows

Y	0	1	3	4
f(x)	12	0	6	12


- Q.33 The function may be represented by a polynomial P(x) = (x-a)R(x), where R(x) is a polynomial of degree 2, obtained by Lagrange's interpolation and a is a real constant. The polynomial R(x) is
 - (A) $x^2 + 6x + 12$
 - (B) $x^2 + 6x 12$
 - (C) $x^2 6x 12$
 - (D) $x^2 6x + 12$
- Q.34 The value of the derivative of the interpolated polynomial P(x) at the position of its real root is
 - (A) -6
- (B) -4
- (C) 6
- (D) 7

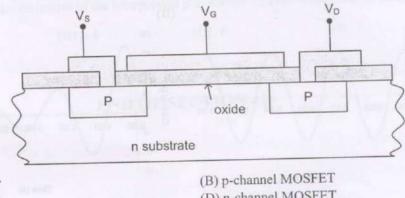
END OF SECTION - B


C: ELECTRICAL SCIENCES

Q. 1 - Q. 8 carry one mark each.

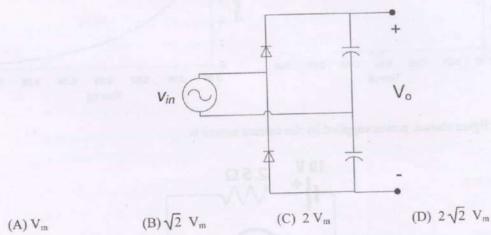
Q.1 An LC circuit is shown in the figure. The inductor current, i, when the switch S is opened at t = 0 is best represented by

Q.2 In the figure shown, power supplied by the current source is

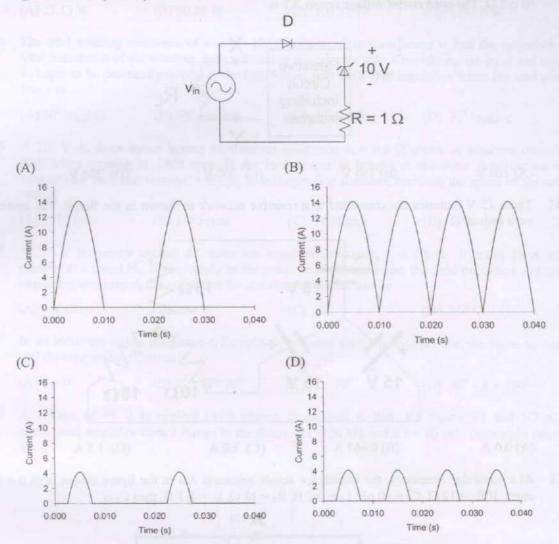


- (A) 0.0 W
- (C) 10.0 W, delivered

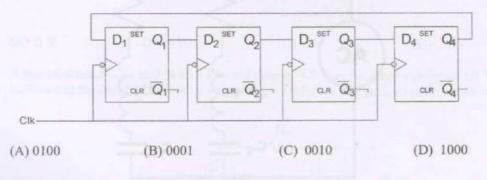
- (B) 5.0 W, delivered
- (D) 10.0 W, absorbed


- An inductor of 0.4 H was constructed with 20 turns on an iron core. If 10 additional turns in the Q.3 same sense are added to the coil on the same core, the new inductance will be
- (B) 0.8 H
- (C) 0.7 H
- (D) 0.6 H
- A three-phase star-connected, slip-ring induction motor has per-phase standstill rotor resistance, Q.4 $r_2 = 0.01 \Omega$ and reactance, $x_2 = 0.05 \Omega$. To achieve maximum torque at starting, the external perphase resistance to be connected at the slip-rings is
 - (A) 0.01Ω
- (B) 0.02 Ω
- (C) 0.03 Ω
- (D) 0.04 Ω

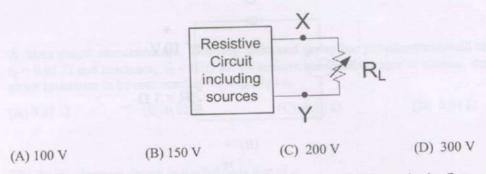
The device structure shown in the figure is that of a Q.5

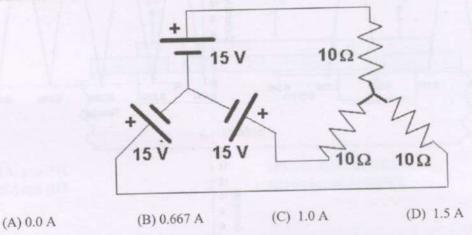


- (A) pnp BJT
- (C) npn BJT

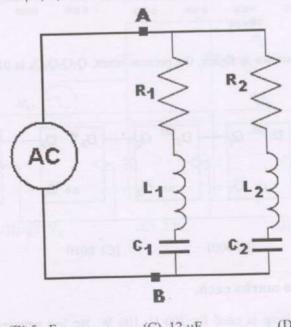

- (D) n-channel MOSFET
- The input voltage applied to the rectifier circuit shown in the figure is $v_{in} = V_m \sin(2\pi 50t)$. The Q.6 steady state output voltage Vo of the rectifier, under no-load condition, is

Q.7 In the figure shown, the diode is ideal and the zener voltage is 10 V. The input voltage, $v_{in} = 10\sqrt{2}\sin(100\pi t)$ V. The wave-shape of the current through the resistor, R is represented by


Q.8 For the counter shown in figure, the present count, Q₁Q₂Q₃Q₄ is 0100. The count after two clock pulses will be


Q. 9 to Q.30 carry two marks each.

- Q.9 An incandescent lamp is rated for 200 V, 100 W. Neglect temperature effects. When the lamp consumes 121 W, the supply voltage is
 - (A) 242 V
- (B) 220 V
- (C) 180 V
- (D) 165 V


Q.10 In the circuit shown in the figure, the load resistance, R_L draws 15 A when it is 10Ω and 20 A when it is 5Ω . The open circuit voltage across XY is

Q.11 Three 15 V batteries are connected to a resistive network as shown in the figure. The current in each resistor is

Q.12 At a particular frequency, the impedance across terminals AB in the figure shown is (6.0 + j0.0) ohms. If $R_1 = 12 \Omega$, $C_1 = 10 \mu F$, $L_1 = 0.2 H$, $R_2 = 12 \Omega$, $L_2 = 0.1 H$, then C_2 is

(A) 1.414 μF

(B) 5 μF

(C) 12 μF

(D) 20 μF

Q.13 A transformer is feeding a 2.5 kVA load at 0.8 pf (lag). If its efficiency is 95% and the copper ENGINEERING SCIENCES- XE

(A) 25.13 W

(B) 50.26 W

(C) 100.54 W

(D) 125.26 W

The total winding resistance of a single-phase, two-winding transformer is half the magnitude of 0.14 total impedance of the winding, both referred to the primary side. Considering the input and output voltages to be practically in-phase, the transformer will have zero regulation when the load power (B) 60° leading (C) 30° leading

(A) 60° lagging

(D) 30° lagging

A 220 V dc shunt motor having an armature resistance, $r_a = 0.5 \ \Omega$ draws an armature current of 40A when running at 1400 rpm. If the load torque is halved at the same field current and maintaining the same terminal voltage, then (neglecting armature reaction) the speed of the motor

(A) 1510 rpm

(B) 1485 rpm

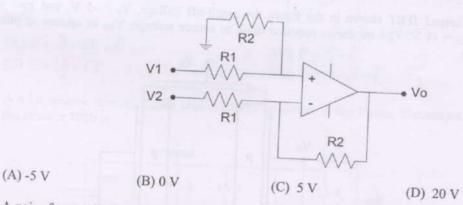
(C) 1470 rpm

(D) 1370 rpm

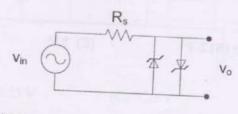
A 230 V separately excited dc motor has armature resistance, r_a = 2.0 $\Omega.$ It draws 15 A when 0.16 running at a speed N₁. If the supply to the armature is disconnected, the field excitation and speed remaining unchanged, the voltage at the armature terminals will be (A) 0 V

(B) 200 V

(C) 210 V


(D) 240 V

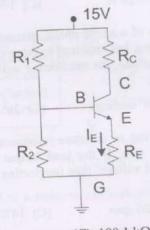
In an induction motor the phase-difference, ϕ , between the voltage applied at the stator terminals 0.17 (B) $0^{0} < \phi < 90^{0}$ (C) $\phi = 90^{0}$


(A) $\phi = 0^0$

(D) $90^{\circ} < \phi < 180^{\circ}$

A voltage of +5 V is applied (with respect to ground) to both the inputs V1 and V2 of an operational amplifier circuit shown in the figure. $R1 = 20 \text{ k}\Omega$ and $R2 = 10 \text{ k}\Omega$. The output voltage,

A pair of zener diodes each with a forward drop of 0.7 V and a zener voltage of 4.7 V is connected Q.19 as shown in the figure. The input voltage is $v_{in} = 10\sin(2t)$. The peak-to-peak output voltage, v_o is


(A) 5.4 V

(B) 4.7 V


(C) 1.4 V

(D) 0.7 V

The npn transistor shown in figure has $h_{fe} = 99$ and $V_{BE} = 0.7$ V. Under quiescent condition, 2008 $V_{EG} = 4.3 \text{ V}$ and $I_E = 1 \text{ mA}$, and the current in R_2 is 0.1 mA. The value of R_1 required for biasing the circuit is

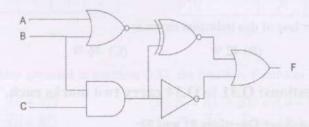
- (A) $10.1 \text{ k}\Omega$
- (B) 90.9 kΩ
- (C) 100.1 kΩ
- (D) 150.2 kΩ
- The forward characteristics of a p-n diode is given by $i=I_s e^{v/(nV_T)}$ Q.21 mV. If the diode current is measured to be 100 mA at 0.7 V drop, the diode power dissipation at a diode current of 200 mA is
 - (A) 70 mW
- (B) 140 mW
- (C) 143 mW
- (D) 147 mW
- For the n-channel JFET shown in the figure the pinch-off voltage, $V_p = -5$ V, and gate source voltage, $V_{GS} = -3$ V. The minimum required drain to source voltage, \dot{V}_{DS} to operate at pinch-off Q.22 condition is

(A) 0 V

(B) 2 V

Q.23 The Boolean function corresponding to the truth table shown is

A	В	C	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

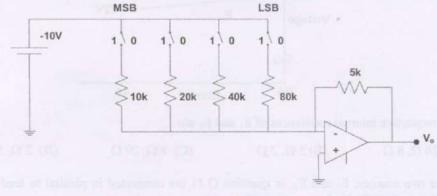

(A)
$$F = A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C}$$

(B)
$$F = ABC + AB\overline{C} + \overline{A}BC$$

(C)
$$F = ABC + AB\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C}$$

(D)
$$F = A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}BC$$

- Q.24 The decimal number 328 when converted to the base of 9 is equivalent to
 - (A) (434)₉
- (B) (424)₉
- (C) (404)₉
- (D) (304)₉
- Q.25 The following logic circuit can be represented by the Boolean expression


(A)
$$F = \overline{B} + BC + \overline{C}$$

(C)
$$F = (\overline{B+C})$$

(B)
$$F = \overline{B} + \overline{C}$$

(D)
$$F = \overline{A} + \overline{B} + \overline{C}$$

Q.26 A 4-bit resistor network based D/A converter is shown in the figure. The output corresponding to the number 1010 is

- (A) 5.0 V
- (B) 6.25 V
- (C) 7.25 V
- (D) 10.0 V

- Two 10 V square waves of same frequency but 90° out-of-phase to each other are applied to X and 2008 Y deflecting plates of a CRO. Both channels are set at 5 V/division and the CRO is operating in the 0.27 X-Y mode. The display on CRO will be
 - (A) A bright circle
 - (B) A bright ellipse
 - (C) Two bright spots at the diagonal of a faint square
 - (D) Four bright spots at the corners of a faint square
 - A CRO that is used in X-Y mode displays a line inclined at an angle of 135°. The X-channel gain is 5V/division and the Y-channel gain is 10V/division. If the display point at a given instant 0.28 corresponds to + 3 divisions on the X-axis, the input voltage to the Y-channel at that instant is
 - (A) -30 V
- (B) 15 V
- (C) + 15 V
- (D) +30 V

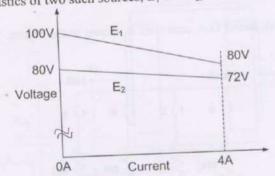
Common Data Questions

Common Data for Questions 29 and 30:

A 1.0 kW induction motor has 15 pole-pairs and is supplied from a 60 Hz source. The motor runs at 0.05 slip. The stator loss is 80 W.

- The speed of the rotating magnetic field in the motor and the frequency of the rotor induced voltage Q.29
 - (A) 120 rpm, 1.5 Hz

(B) 120 rpm, 28.5 Hz


(C) 240 rpm, 3.0 Hz

- (D) 240 rpm, 57.0 Hz
- The rotor copper loss of this induction motor is 0.30
 - (A) 4.6 W
- (B) 42 W
- (C) 46 W
- (D) 54 W

Linked Answer Questions: Q.31 to Q.34 carry two marks each.

Statement for Linked Answer Questions 31 and 32:

A practical dc voltage source is represented as an ideal dc voltage source in series with an internal resistance. The V-I characteristics of two such sources, E1 and E2, are shown in the figure.

- The respective internal resistances of E1 and E2 are
 - (A) 20 Ω , 8 Ω
- (B) 5Ω , 2Ω
- (C) 8Ω , 20Ω
- (D) 2Ω, 5Ω
- If the two sources, E_1 and E_2 , in question Q.31 are connected in parallel to feed a load of 200 Ω 0.32 resistance, then the load current is in the range
 - (A) 0.0 A to 0.5 A

(B) 0.5 A to 2.0 A

(C) 2.0 A to 4.0 A

(D) 4.0 A to 8.0 A

Statement for Linked Answer Questions 33 and 34:

A function F, in "Sum of Product (SOP)" form is described by $F = \sum m (0,1,3,4,5,6,7,13,15)$

Q.33 The Karnaugh Map for F is given by (X being don't care)

(A)

AB CD	00	01	11	10
00	X	X	X	1
01	X	X	X	X
11	1	X	X	1
10	1	1	1	1

(B

CD	00	01	11	10
AB				
00	1	1	1	X
01	1	1	1	1
11	X	1	1	X
10	X	X	X	X

(C

AB CD	00	01	11	10
00	1	X	1	X
01	X	1	X	1
11	1	X	X	X
10	X	1	X	1

(D)

AB CD	00	01	11	10
00	1	1	X	X
01	X	X	X	X
11	X	1	1	1
10	X	1	1	X

Q.34 Using the Karnaugh Map obtained in question Q.33, the function, F reduces to

(A)
$$F = \overline{A}\overline{C} + \overline{A}D + AB + BD$$

(B)
$$F = AC + AD + \overline{A}\overline{B} + \overline{B}\overline{D}$$

(C)
$$F = AC + \overline{A}D + \overline{A}\overline{B} + \overline{B}\overline{D}$$

(D)
$$F = \overline{A}\overline{C} + \overline{A}D + \overline{A}B + BD$$

END OF SECTION - C

D: FLUID MECHANICS

Useful data:

Acceleration due to gravity, $g = 10 \text{ m/s}^2$

Density of water $\rho_w = 1000 \text{ kg/m}^3$

Density of air (unless otherwise specified), $\rho_a = 1.2 \text{ kg/m}^3$

Q. 1 - Q. 8 carry one mark each.

- A potential function can be defined for a flow if and only if it is 0.1
 - (A) laminar
- (B) incompressible
- (C) steady
- (D) irrotational

The momentum equation (Euler), Q.2

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x},$$

is valid if and only if the flow is

- (A) unsteady
- (B) laminar
- (C) steady
- (D) inviscid
- Which of the following statements is true for two kinematically similar flows? 0.3
 - (A) They must be geometrically similar but may or may not be dynamically similar
 - (B) They must be dynamically similar but may or may not be geometrically similar
 - (C) They must be neither geometrically similar nor dynamically similar
 - (D) They must be both geometrically similar and dynamically similar
- The Darcy-Weisbach equation for head loss is valid 0.4
 - (A) only for laminar flow through smooth pipes
 - (B) only for turbulent flow through rough pipes
 - (C) for laminar or turbulent flows through smooth pipes only
 - (D) for laminar or turbulent flow through smooth or rough pipes
- A ceiling fan of diameter, D, and weight, W, is suspended at a distance, L, below the ceiling by a Q.5 support rod. When the fan spins at high speed and creates a downward flow the force exerted by the fan on the support rod is
 - (A) greater than W
- (B) less than W

(C) equal to W

- (D) greater than or less than W depending on the value of D/L
- Logs of the following cross-section are fully submerged horizontally in water Q.6

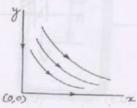
Solid Cylinder

Hollow Cylinder

Solid Square

Hollow Square

The buoyancy force passes through the point 'O' for which of the following cross-sections?

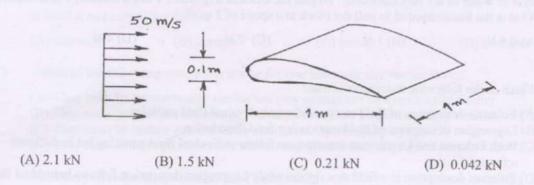

- (A) Solid cylinder only
- (C) All the cross sections except hollow square
- (B) Solid cylinder and hollow cylinder only
- (D) All the cross-sections

- Q.7 A fluid particle can accelerate
 - (A) in a steady non-uniform flow-field
 - (B) only if the flow field is both unsteady and non-uniform
 - (C) only in an unsteady flow-field
 - (D) in a steady uniform flow-field if the viscous forces are large enough
- Q.8 A fluid element is said to have vorticity with respect to a reference frame if in that reference frame
 - (A) it travels along a circular streamline
 - (B) it travels along a circular pathline
 - (C) it revolves about any arbitrary point in the flow-field
 - (D) it rotates about its own centre of mass as it moves

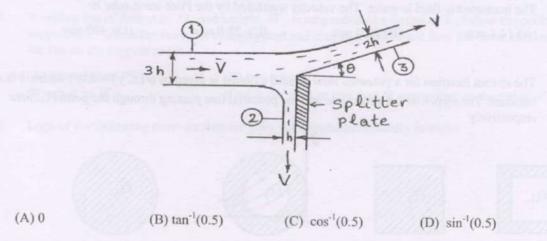
Q. 9 to Q.30 carry two marks each.

- Q.9 A cubical block of melting ice (20 cm x 20 cm x 20 cm) rests on a smooth horizontal floor over a layer of water of 0.1 mm thickness. To pull the block at a speed of 1 m/s a force of 1 N is required. What is the force required to pull the block at a speed of 2 m/s?
 - (A) 0.5 N
- (B) 1 N
- (C) 2 N
- (D) 4 N

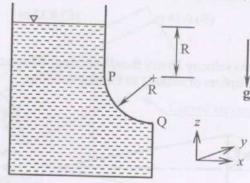
- Q.10 Which of the following statements is true?
 - (A) Eulerian description of fluid motion follows individual fluid particles
 - (B) Lagrangian description of fluid motion is a field description
 - (C) Both Eulerian and Lagrangian descriptions follow individual fluid particles but in different reference frames
 - (D) Eulerian description is a field description while Lagrangian description follows individual fluid particles
- Q.11 The velocity in a wind tunnel is being measured using a Pitot-static tube connected to a vertical Utube manometer. The density of air is 1.2 kg/m³ and the deflection of the manometer is 24 mm. The manometric fluid is water. The velocity measured by the Pitot-static tube is:
 - (A) 14.1 m/s
- (B) 20.0 m/s
- (C) 22.0 m/s
- (D) 400 m/s
- Q.12 The stream function for a potential flow around a corner is given by $\psi(x, y) = kxy$, where k is a constant. The slopes of the streamline and the potential line passing through the point (1,1) are respectively



- (A) 1 and -1
- (B) -1 and 1
- (C) 1 and 1
- (D) -1 and -1

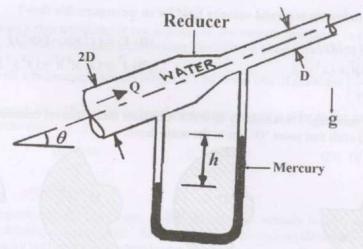

Q.13 The non-dimensional numbers shown in column 1 relate the inertial force with another force shown in column 2. Match the dimensionless number with the corresponding force.

Column 2
P: Pressure G: Gravity S: Surface tension V: Viscous
(B) R-V, F-G, E-S, W-P (D) R-V, F-G, E-P, W-S


Q.14 Consider the aerofoil of the dimensions shown. The lift coefficient C_L is measured to be 1.4 (based on the largest projected area). If air of density 1.2 kg/m³ flows over the aerofoil at 50 m/s the lift force is:

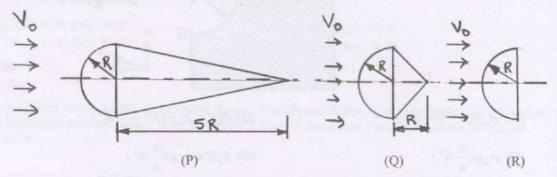
Q.15 A two-dimensional water jet hits a splitter plate as shown. The velocities at sections ①, ② and ③ may be taken as uniform and equal to V. The weight of the water and the friction along the plate may be neglected. For the data shown what is θ ?

Q.16 Find the vertical hydrostatic force, f_z , on the surface P-Q due to the water in the tank. Note, f_z is the force per unit width along y. The surface P-Q is shaped like a quarter-cylinder of radius R.. The atmospheric pressure is P_0 .



(A) $\rho_w g(R^2 + \frac{\pi}{4}R^2)$

(B) $P_0 R + \rho_w g (R^2 + \frac{\pi}{4} R^2)$


(C) $\rho_w g(\frac{\pi}{4}R^2)$

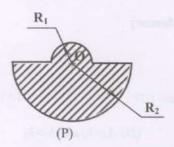
- (D) $P_0 R + \rho_w g(\frac{\pi}{4}R^2)$
- For a given location in a flow, the rate of change of density following a fluid particle $\left(\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + u\frac{\partial\rho}{\partial x} + v\frac{\partial\rho}{\partial y} + w\frac{\partial\rho}{\partial z}\right), \text{ is } 2.4 \text{ kg/(m}^3\text{s)}. \text{ If the density at that point is } 1.2 \text{ kg/m}^3, \text{ then}$ the divergence of the velocity field ($\nabla \cdot \vec{V}$) at that point is:
 - (A) 0.5 s⁻¹
- (B) -0.5 s^{-1} (C) -2 s^{-1}
- Q.18 Water is flowing with volume flow rate Q through a pipe whose diameter reduces to half across a reducer. If the flow is frictionless, compare the manometer reading h_1, h_2 and h_3 corresponding to the three different inclinations of the pipe $\theta_1 = 30^\circ$, $\theta_2 = 0^\circ$ and $\theta_3 = -30^\circ$. Note that only the pipe tilts, while the manometer always stays vertical.

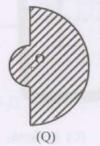
- (A) h1>h>>h2
- (B) h1<h2<h3
- (C) $h_1 = h_2 = h_3$
- (D) $h_1=h_3$ and $h_1>h_2$
- A 4 m wide canal is modelled using a 1 m wide dynamically similar model in the laboratory. A 0.19wooden block was observed to travel between two points in the model in 8 seconds. How long will it take to travel between the corresponding points in the actual canal?
 - (A) 4 s
- (B) 8 s
- (C) 16 s
- (D) 32 s

- Q.20 Water (dynamic viscosity $\mu = 0.001 \text{ Ns/m}^2$) flows under pressure through a pipe of 1 cm diameter at a velocity of 1 cm/s. What would be the head loss per km length of the pipe?
 - (A) 0.08 m
- (B) 0.16 m
- (C) 0.32 m
- (D) 1.28 m
- Air with free stream velocity 10 m/s flows over three different bluff bodies P, Q and R as shown below, with a hemisphere of radius 1 m forming the nose.

Comparing the total drag force F on the three bodies, state which of the following is true.

- (A) $F_P > F_O > F_R$

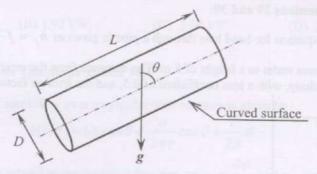

- (B) $F_p = F_Q = F_R$ (C) $F_p < F_Q < F_R$ (D) $F_p = F_Q$ and $F_R > F_P$
- A single engine jet aircraft is in a steady level flight at speed V_a with respect to ground. Assume that the engine intake area (A_{in}) is much larger than the engine exhaust area (A_{e}) . If the density of the exhaust gas is ρ_e and the exhaust velocity relative to the aircraft is V_e , the thrust generated by the engine is
 - (A) $\rho_e V_e^2 A_e$


- (B) $\rho_e (V_a + V_e)^2 A_e$ (C) $\rho_e (V_a V_e)^2 A_e$ (D) $\rho_e (V_a + V_e) V_e A_e$
- Q.23 Which of the following is a valid velocity field for an incompressible flow?
 - (A) $\vec{V} = (xy)\hat{i} (xy)\hat{i}$

(B) $\vec{V} = (x^2 v)\hat{i} - (xv^2)\hat{j}$


(C) $\vec{V} = (xy^2)\hat{i} + (x^2y)\hat{j}$

- (D) $\vec{V} = (x^2 y^2)\hat{i} (x^2 y^2)\hat{j}$
- 0.24 A log is fully submerged horizontally in water. Consider four different orientations (cross-sections shown below) such that point 'O' lies at the same depth.



Which orientation(s) will give the maximum moment about point O?

- (A) P
- (B) Q
- (C) R
- (D) P and S

Q.25 A closed cylindrical container of diameter D and length L is completely filled with a liquid of density ρ . The axis of the cylinder makes an angle θ with the vertical.

The total force on the curved surface is

$$(A)\frac{\pi D^2 L}{4}\rho g\sin\theta$$

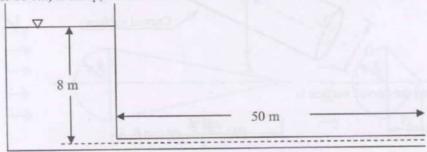
(B)
$$\frac{\pi D^2 L}{4} \rho g \cos \theta$$

(C)
$$\frac{3\pi D^2 L}{4} \rho g \sin \theta$$

(D)
$$\frac{3\pi D^2 L}{4} \rho g \cos \theta$$

- Q.26 Air flowing over a smooth cylinder of diameter 30 cm in a wind tunnel produces a two-dimensional laminar boundary layer that separates from the surface of the cylinder. The surface of the cylinder is then roughened with sand paper so that the boundary layer turns turbulent. The location of the point of separation will
 - (A) shift upstream
 - (B) shift downstream
 - (C) not shift
 - (D) shift upstream or downstream depending on the roughness height
- Q.27 The drag force on a ship travelling in sea depends on the viscous resistance as well as the effect of surface waves. A model with complete dynamic similarity is to be constructed in the laboratory using a fluid with a kinematic viscosity which is 1/64 times that of seawater $\left(\frac{v_m}{v_p} = \frac{1}{64}\right)$. What

should be the length ratio (l_m/l_p) ? Note that the subscripts m and p refer to the model and the prototype respectively.


- (A) 1/64
- (B) 1/16
- (C) 1/8
- (D) 16
- Q.28 Air flows in a square duct of side 10 cm. At the entrance, the velocity is uniform at 10 m/s and the boundary layer thickness is negligible. At the exit, the displacement thickness is 5 mm (on each wall). The velocity outside the boundary layers at the exit is:
 - (A) 12.35 m/s
- (B) 11.08 m/s
- (C) 10 m/s
- (D) 9 m/s

Common Data Questions

Common Data for Questions 29 and 30:

The Darcy-Weisbach equation for head loss through a pipe is given as $h_f = f \frac{L}{D} \frac{V^2}{2g}$. A reservoir, as

shown in the figure, stores water to a height of 8 m. The entrance from the reservoir to the pipe (length 50 m, diameter 10 cm) is sharp, with a loss coefficient of 0.5, and the friction factor for the pipe is 0.017.

Pipe diameter = 10 cm

Q.29 What would be the discharge through the pipe?

(A) $0.0314 \text{ m}^3/\text{s}$

(B) $0.0322 \text{ m}^3/\text{s}$

(C) 0.0331 m³/s

(D) 0.0341 m³/s

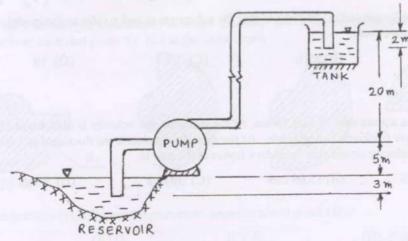
Q.30 If it is desired to increase the discharge, the following four options are available:

- 1. Increase the pipe length, keeping everything else the same
- 2. Increase the pipe diameter, keeping everything else the same
- 3. Add a valve at the end of the pipe, keeping everything else the same
- 4. Replace the sharp entrance by a rounded entrance, keeping everything else the same

Only two of these options serve our purpose. Which are they?

(A) 1, 2

(B) 1,3


(C) 2, 4

(D) 3, 4

Linked Answer Questions: Q.31 to Q.34 carry two marks each.

Statement for Linked Answer Questions 31 and 32:

A pump draws water from a reservoir and discharges it to an overhead tank as shown. The area of the outlet pipe is 20 cm² and the average velocity in the outlet pipe is 3 m/s. Neglect the minor and major losses in the piping.

Q.31 The total head developed by the pump (in metres of water) is:

(A) 27 m

(B) 25 m

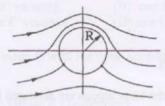
(C) 24 m

(D) 22 m

If the combined efficiency of the pump and motor is 0.75, then the power required to run the pump 0.32

(A) 1.76 kW (B) 1.92 kW

(C) 2.00 kW


(D) 2.16 kW

Statement for Linked Answer Questions 33 and 34:

The potential function for an ideal flow over a cylinder with rotation is given by

$$\phi(r,\theta) = Ur\cos\theta + \frac{\mu}{2\pi r}\cos\theta + \frac{\Gamma}{2\pi}\theta$$

The velocity components are related to the potential function as $u_r = \frac{\partial \phi}{\partial r}$ and $u_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$.

0.33 What is the radius of the cylinder?

(A) $R = \sqrt{\frac{\mu}{2\pi U}}$

(B) $R = \sqrt{\frac{2\pi U}{\mu}}$

(C) $R = \sqrt{\frac{\mu}{\Gamma - 2\pi U}}$ (D) $R = \sqrt{\frac{\Gamma - 2\pi U}{\mu}}$

Where are the stagnation points located? Q.34

(A) $\theta = 0$ and $\theta = \pi$

(B) $\theta = \sin^{-1} \left(\frac{\Gamma}{4\pi UR} \right)$ and $\theta = \pi - \sin^{-1} \left(\frac{\Gamma}{4\pi UR} \right)$

(C) $\theta = \frac{\pi}{2}$ and $\theta = -\frac{\pi}{2}$

(D) $\theta = \cos^{-1} \left(\frac{\Gamma}{4\pi UR} \right)$ and $\theta = 2\pi - \cos^{-1} \left(\frac{\Gamma}{4\pi UR} \right)$

END OF SECTION - D

E: MATERIALS SCIENCE

Useful Data:

Avogadro's number $: 6.023 \times 10^{23} \text{ mol}^{-1}$ Boltzmann's constant $: 1.38 \times 10^{-23} \text{ J.K}^{-1}$ Electron charge $: 1.6 \times 10^{-19} \text{ C}$ Gas constant $: 8.314 \text{ J.mol}^{-1} \text{K}^{-1}$ Electron rest mass $: 9.1 \times 10^{-31} \text{ kg}$

Free space permittivity (ϵ_0) : 8.854 x 10⁻¹² F.m⁻¹ or C.V⁻¹.m⁻¹ Free space magnetic permeability (μ_0) : 4π x 10⁻⁷ H.m⁻¹

Speed of light (c) $4\pi \times 10^{7} \text{ H.m}^{-1}$ Planck's constant (h) $5\pi \times 10^{8} \text{ m.s}^{-1}$ Bohr magneton, μ_{B} $5\pi \times 10^{-24} \text{ A.m}^{-2}$

 $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ 1 cal = 4.2 J

Q. 1 - Q. 8 carry one mark each.

- Q.1 In the rocksalt-type structure, the large anions are arranged in a cubic close-packed manner. The cations occupy
 - (A) all the octahedral interstitial sites
 - (B) half of the octahedral interstitial sites and quarter of the tetrahedral interstitial sites
 - (C) all the tetrahedral interstitial sites
 - (D) 50% of the tetrahedral interstitial sites
- Q.2 Which of the following is **NOT** a Bravais lattice?
 - (A) Body control to the
 - (A) Body-centered tetragonal

- (B) Face-centered tetragonal
- (C) Body-centered orthorhombic
- (D) Face-centered orthorhombic
- Q.3 The characteristic diffusion distance in a material with diffusivity "D" in time "t" is proportional to
 - (A) Dt1/2
- (B) $D^{1/2}t$
- (C) $D^{1/2}t^{1/2}$
- (D) Dt
- Q.4 At constant pressure, the maximum degrees of freedom in a binary phase diagram are
 - (A) 0

(B) 1

- (C) 2
- (D) 3
- Q.5 When the particle size decreases, the surface-to-volume ratio
 - (A) increases

(B) decreases

(C) remains constant

- (D) is material-dependent
- Q.6 A material in the superconducting state is
 - (A) paramagnetic
- (B) diamagnetic
- (C) ferromagnetic
- (D) antiferromagnetic

- Q.7 Toughness is a measure of
 - (A) the stress required to fracture a material
 - (B) the strain required to fracture a material
 - (C) the energy required to fracture a material
 - (D) the energy required to plastically deform a material

Q.8	Metals, because of their m	any available empty	electron states, will	absorb		
	 (A) X- and γ-ray radiation (B) visible light of all freq (C) ultra-violet (UV) light (D) all the frequencies green 	uencies	ight			
Q. 9 t	o Q.30 carry two mark	ks each.				
Q.9	The stacking sequence of	the (001) FCC and (0	001) HCP planes is			
	(A)ABAB and ABAB. (C)ABAB and ABCAB		(B)ABCABC (D)ABCABC	and ABCABC C and ABAB		
Q.10	A Schottky defect in CaF ₂	is comprised of				
	(A) one Ca ²⁺ vacancy and (C) two Ca ²⁺ vacancies ar		(B) one Ca ²⁺ va (D) one Ca ²⁺ va	cancy and one F interstitial cancy and two F vacancies		
Q.11	Match the materials property (Group I) with the most appropriate characterization technique (Group II).					
	Group I (Property) P) Lattice strain Q) Band Gap R) Surface topography S) Specific heat	2) X-ray diffra3) Optical Abs4) Differential	ectron microscope	ry		
	(A) P-1, Q-2, R-3, S-4		(B) P-5, Q-1, R-	2, S-3		
	(C) P-2, Q-3, R-1, S-4		(D) P-3, Q-5, R-	1, S-4		
Q.12	The average degree of pol weight of 36000 amu is (a			with an average molecular nu, respectively)		
	(A) 1286	(B) 857	(C) 360	(D) 346		
Q.13	In an alloy system, X-Y, three phases α (10), γ (21), and Liq. (45) are in equilibrium at 700°C and γ (21), Liq. (68) and β (89) are in equilibrium at 420°C. (numbers in the brackets are compositions of the phase in wt% of X). Choose the INCORRECT statement:					
	 (A) γ is an intermetallic c (B) Equilibrium at 700°C (C) Equilibrium at 420°C (D) Equilibrium at 420°C 	is peritectic is eutectic				
Q.14	Which one of the followir austenitic stainless steel?	ng may NOT help in i	resisting the weld de	cay or intergranular corrosion in		
	(A) Heating the stainless(B) Heating the stainless(C) Lowering the carbon(D) Alloying the stainless	steel to 1000°C follow content to 0.03 wt. %	wed by furnace cooli	ng		
Q.15				of 230 GPa. The stem is made xy matrix. The Young's moduli		

(A) 0.006 (B) 0.428 (C) 0.572 (D) 0.994

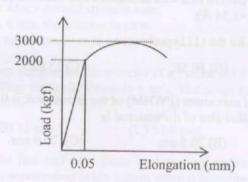
of carbon fibre and epoxy are 400 GPa and 3 GPa respectively. The volume fraction of the fiber in

the composite should be

Q.16	Match the material (Group I) with its most well known application (Group II).				
	Group I (Material)	Cen	II (Analination)		
			up II (Application)		
			ibricant		
			atting tools		
			frared detector		
	S) Quartz 4) Crystal c		ystal oscillator		
		5) Re	ed LED		
	(A) P-1, Q-2, R-3, S-4	THE RESERVE THE PARTY OF THE PA	(B) P-3, Q-1, R-2, S-4		
	(C) P-5, Q-1, R-2, S-3				
	(0) 1 -5, Q-1, 10-2, 5-5		(D) P-2, Q-5, R-1, S-4	am BAUA (CO)	
Q.17	At constant volume, the energy required to raise the temperature of 1 g of a monatomic solid (atomic mass: 24 amu) by 1°C at $T >> \theta_{Debye}$ is				
	(A) 0.20 cal	(B) 0.25 cal	(C) 0.30 cal	(D) 0.35 cal	
Q.18	For a hard magnet, the remnant induction (B_r) is 0.5 Tesla and the coercive field (H_c) is 4×10^4 A.m ⁻¹ . The energy loss of the magnet per cycle is				
	(A) 2 kJ.m ⁻³	(B) 20 kJ.m ⁻³	(C) 40 kJ.m ⁻³	(D) 80 kJ.m ⁻³	
Q.19	A 1 mm thick sheet of a material having a relative dielectric constant of 4 is subjected to a static voltage of 100 V. The polarization induced in the sheet is				
	(A) 3×10 ⁻⁶ C.m ⁻²	(B) 2.7×10 ⁻⁶ C.m ⁻²	(C) 4.2×10 ⁻⁷ C.m ⁻²	(D) 6.8×10 ⁻⁸ C.m ⁻²	
Q.20	The refractive index of a window glass is 1.5 in the range of visible wavelengths of light. The value of the reflectivity is				
	(A) 0.01	(B) 2	(C) 0.04	(D) 5	
Q.21	In BaTiO ₃ , the present	ee of spontaneous polari	zation is as a result of the		
	 (A) relative displacements of the Ti⁴⁺ and O²⁻ ions from their symmetrical positions (B) displacement of only cations from their symmetrical positions (C) relative displacements of Ba²⁺ and O²⁻ ions from their symmetrical positions (D) displacement of only O²⁻ ions from their symmetrical positions 				
Q.22	What is the yield strength of a material with a grain size of 10 µm? The yield strength of a single crystal of this material is 80 MPa and its Hall-Petch constant is 0.6 MN.m ^{-3/2} .				
	(A) 80 MPa	(B) 86 MPa	(C) 140 MPa	(D) 270 MPa	
Q.23	The amount of sulphur (S) required for 5% cross linking in 100 kg of Polyisoprene is (atomic masses of H, C, and S are 1, 12, and 32 amu, respectively)				
	(A) 23.5 g	(B) 47 g	(C) 2.35 kg	(D) 16 kg	
Q.24	Match the type of laser (Group I) with its lasing medium (Group II).				
	Group I (Laser)	Group II (Las	ing Medium)		
	P) CO ₂	1) Gas	- Trouting		
	Q) Ruby	2) Metal vapo	r		
	R) Dye				
	S) HeCd	3) Liquid			
	5) Hecu	4) Solid			
		5) Gas-ions			
	(A) P-1, Q-4, R-3, S-2		(B) P-1, Q-2, R-3, S-4		
	(C) P-2, Q-4, R-5, S-4		(D) P-5, Q-4, R-3, S-4		
	(-), & 1, 100, 0-1		(D) 1-3, Q-4, R-3, S-4		

0.25 Which of the following is the direction common to (111) and (111) planes?

- (A) [011]
- (B) [21 1]
- (C) [0 1 11
- (D) [001]


The net magnetic moment of iron (Fe) is $2.22~\mu_B$ per atom. Calculate the saturation flux density in 0.26 iron. (Density of iron: 7.87 g.cm⁻³; Atomic mass of iron: 56 amu)

- (A) 2.18×10⁻⁶ Tesla
- (B) 2.18×10⁻¹² Tesla (C) 2.18×10⁻⁹ Tesla
- (D) 2.18 Tesla

Common Data Questions

Common Data for Questions 27 and 28:

A hypothetical load elongation curve for a 13 mm diameter tensile specimen with 50 mm gauge length is as shown in the diagram below.

The Young's modulus is 0.27

- (A) 101 GPa
- (B) 148 GPa
- (C) 201 GPa
- (D) 301 GPa

Q.28 The ultimate tensile strength of the material is

- (A) 207 MPa
- (B) 247 MPa
- (C) 222 MPa
- (D) 267 MPa

Common Data for Questions 29 and 30:

A cylindrical well annealed copper (Cu) specimen having a cross-sectional area of 5×10-6 m2 and length of 1m has a dislocation density of $10^9 \ m^{-2}$ and grain diameter of 40 μm . This specimen is reduced to a crosssection of 1×10⁻⁶ m² by passing through a die and in the process, its dislocation density increased to 1013 m2. Subsequently the wire is annealed at 450°C and the just-recrystallized wire has a grain diameter of 10 μm. If it is kept at 450°C for a longer duration, grain growth would occur. (Shear modulus of Cu: 44 GPa; Atomic diameter of Cu: 2.56 Å; Specific grain boundary energy of Cu: 0.5 J.m⁻²)

Q.29 What is the strain energy stored in the just-deformed copper specimen?

- (B) 36 J
- (D) 36 mJ

What is the driving force for grain growth (stored grain boundary energy) just after recrystallization Q.30 at 450°C in the given specimen?

- (A) 375 mJ
- (B) 750 mJ
- (C) 1.5 J
- (D) 3.0 J

Linked Answer Questions: Q.31 to Q.34 (carry two marks each)

Statement for Linked Answer Questions 31 and 32:

For a semiconductor, the electron and hole mobilities are $\mu_e = 0.364 \text{ m}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$, $\mu_h = 0.19 \text{ m}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$, and the intrinsic carrier concentrations are $n_e = n_h = 2.3 \times 10^{19} \text{ m}^{-3}$ at 300 K.

- Q.31 The electrical conductivity of the semiconductor at 300 K is
 - (A) $2.04 \Omega^{-1} \text{m}^{-1}$
- (B) $1.34 \Omega^{-1} \text{m}^{-1}$ (C) $0.70 \Omega^{-1} \text{m}^{-1}$
- (D) $2.74 \Omega^{-1} \text{m}^{-1}$
- Q.32 Upon increasing the temperature to 373 K, the electrical conductivity increases to 25.75 Ω^{-1} m⁻¹. The bandgap of the semiconductor is
 - (A) 1.43 eV
- (B) 1.11 eV
- (C) 0.67 eV
- (D) 0.33 eV

Statement for Linked Answer Questions 33 and 34:

The X-ray powder diffraction pattern of a well annealed cubic material (lattice parameter, a = 4.2 Å) is taken using CuK_{α} radiation ($\lambda=1.54$ Å).

- Q.33 The Bragg angle (θ_B) for the (111) peak occurs at
 - (A) 18.55°
- (B) 10.56°
- (C) 15.02°
- (D) 33.37°
- 0.34 If the full width at half maximum (FWHM) of the above peak is 0.4°. Ignoring the instrumental broadening, the crystallite size of the material is
 - (A) 20.2 nm
- (B) 20.5 nm
- (C) 20.9 nm
- (D) 23.7 nm

END OF SECTION - E

F: SOLID MECHANICS

O 1-O 8 carry one mark each

Q. I	- Q. o carry one mark each.				
Q.1	Which of the following is true?				
	 (A) In the plane of maximum shear, normal stress is always zero. (B) In the plane of maximum shear, normal stress may not be always zero. (C) In a principal plane, shear stress is never zero. (D) In a principal plane, normal stress is always zero. 				
Q.2	State of stress at a point in a loaded body is given by $\sigma_x=10$ MPa, $\sigma_y=0$, $\sigma_z=-5$ MPa and $\tau_{xy}=\tau_{yz}=\tau_{zx}=0$. Maximum shear stress at that point is				
	(A) 5 MPa (B) 2.5 MPa (C) 7.5 MPa (D) 0				
Q.3	State of stress at a point of a body in a plane stress problem is given by $\sigma_x = -6$ MPa, $\sigma_y = 2$ MPa and $\tau_{xy} = $ MPa. Which of the following is true at that point?				
	 (A) There exists at least one plane where normal stress is zero. (B) There exists no plane where normal stress is zero. (C) There exists no plane where shear stress is zero. (D) In the plane of maximum shear, normal stress is zero. 				
Q.4	To an observer standing on the ground the velocity of a cyclist is 12 m/s in the horizontal direction and that of rain drops falling vertically down is 6 m/s. The magnitude of the velocity of the rain drops relative to the cyclist is				
	(A) 6 m/s (B) 12 m/s (C) 13.4 m/s (D) 18.4 m/s				
Q.5	If a mass attached to the free end of a linear spring is so constrained that it executes vertical undamped oscillations, its acceleration at the instant when it occupies the static equilibrium position is				
	(A) vertically upward (C) the maximum (B) vertically downward (D) zero				
Q.6	If three nonparallel forces are in equilibrium they				
	(A) must be concurrent but need not be coplanar (B) must be coplanar but need not be concurrent (C) must be both concurrent and coplanar (D) need not have zero as the geometric sum of the force vectors				
Q.7	A point of contraflexure in a loaded beam is one where				
	(A) shear force is maximum. (B) shear force and bending moment are maximum. (D) bending moment is zero.				

- Q.8 In a beam of uniform strength, the extreme fibers at every cross section are stressed to the maximum allowable stress. Consider a solid circular beam of uniform strength subjected to bending moment. In this beam, the diameter of the cross-section at any section is proportional
 - (A) to cube root of the bending moment at that section.
 - (B) to the square root of the bending moment at that section.
 - (C) to the bending moment at that section.
 - (D) inversely to the bending moment at that section.

Q. 9 to Q.30 carry two marks each.

Q.9 For a loaded body representing a two dimensional plane problem, the displacement components along x and y at any point (x,y) are $u=x^2+y^2$, v=2y respectively. Principal strains at the point (3, 1) in the body are

(A)
$$\varepsilon_1 = 8, \varepsilon_2 = 2$$

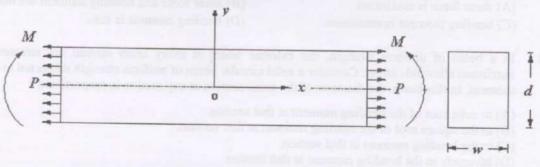
(B)
$$\varepsilon_1 = 6.24, \varepsilon_2 = 1.76$$

(C)
$$\varepsilon_1 = 0, \varepsilon_2 = 3$$

(D)
$$\varepsilon_1 = 5, \varepsilon_2 = -3$$
.

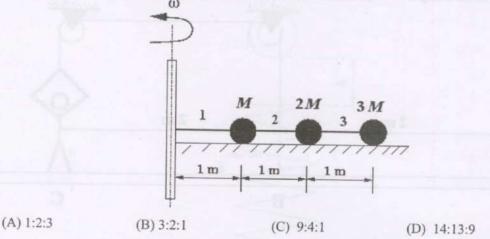
Q.10 A 9 kN tensile load will be applied to a 50 m length steel wire with E = 200 GPa. The normal stress in the wire must not exceed 150 MPa and the increase in the length of the wire should be at most 25 mm. Which among these could be the smallest diameter of the wire so that the wire does not fail?

- (B) 7.75 mm
- (C) 8.75 mm
- (D) 10.7 mm
- Q.11 A uniform circular cross section rod made of a brittle material is subjected to a pure torsion. If d is the diameter of the cross section of the rod and σ_{all} is the maximum allowable normal stress for the material of the rod, then the maximum twisting moment that can be applied to the rod without failure is

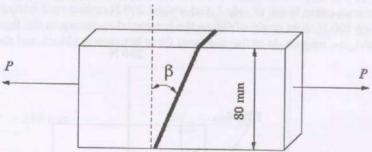

(A)
$$\frac{\sigma_{all}}{16}\pi d^3$$

(B)
$$\frac{\sigma_{all}}{32}\pi d^3$$

(C)
$$\frac{\sigma_{all}}{8}\pi d^3$$

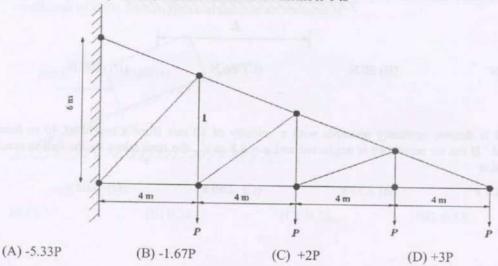

(D)
$$\frac{\sigma_{all}}{64}\pi d^3$$

- Q.12 A thin walled spherical pressure vessel of mean radius 1000 mm, having a wall thickness of 10 mm is subjected to an internal pressure of 0.8 MPa. The maximum shear stress developed in the wall will be
 - (A) 0
- (B) 20 MPa
- (C) 40 MPa
- (D) 80 MPa
- Q.13 A rectangular cross section beam of width w = 0.25 m and depth d = 0.4 m is subjected to a bending moment M = 200 N-m and a uniform axial load of P = 200 N as shown. Measured from the centroidal axis of the beam, normal stress will be zero at a distance of

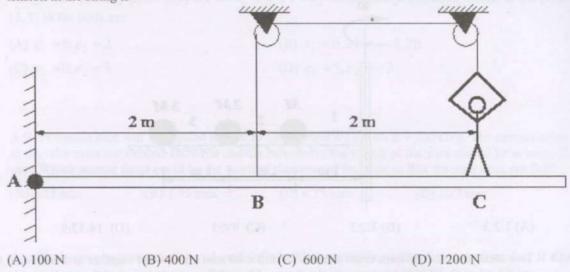


- (A) y = 15 mm
- (B) y = -13.3 mm
- (C) y = -15 mm
- (D) y = 10 mm

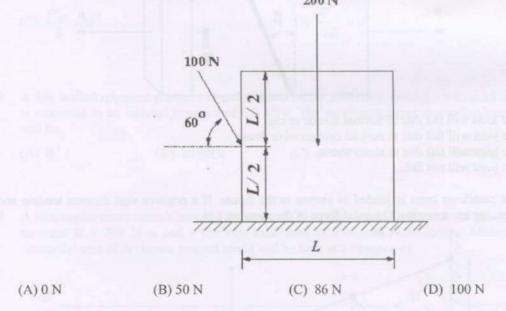
Q.14 Three masses M, 2M and 3M are attached by circular cross section wires and are rotated around a vertical axis on a frictionless plane at 4 Hz as shown in the figure. Consider the masses to be concentrated as points. For equal stresses in wires in all the three segments, the cross sectional areas of the wires in the three segments 1, 2 and 3 should be in the ratio



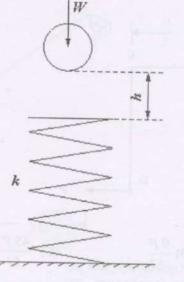
Q.15 Two steel plates of uniform cross section 10 mm x 80 mm are welded together and subjected to an axial load of P=100 kN as shown in the figure. Allowable normal stress (tension and compression) and allowable shear stress for the material of the weld are 100 MPa and 50 MPa respectively and $\beta=25^{\circ}$. Which of the following is true?



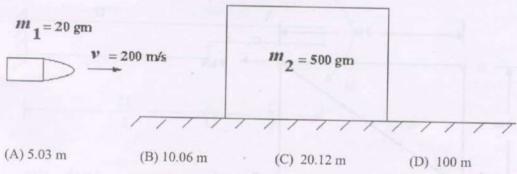
- (A) The joint will fail due to normal tensile stress.
- (B) The joint will fail due to normal compressive stress.
- (C) The joint will fail due to shear stress.
- (D) The joint will not fail.


Q.16 A plane cantilever truss is loaded as shown in the figure. If a positive sign denotes tension and a negative sign compression, the axial force in the member 1 is

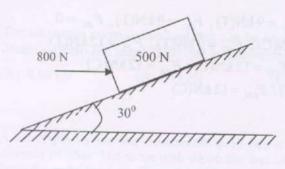
Q.17 A man weighing 600N stands on a horizontal beam of negligible weight at C and holds a string passing over two smooth pulleys and attached to point B on the beam as shown in the figure. The tension in the string is



Q.18 A homogeneous cubic block of side L and weight 200 N resting on a horizontal floor is acted upon by a force of 100 N at an angle of 60^{0} to the horizontal as shown in the figure. If the coefficient of friction is 0.3, the magnitude of the frictional force between the block and the floor is 200 N


- Q.19 A ball is thrown vertically upwards with a velocity of 10 m/s from a height of 40 m from the ground. If the air resistance is neglected and $g = 9.8 \text{ m/s}^2$, the time taken by the ball to reach the ground is
 - (A) 2.01 s
- (B) 2.53 s
- (C) 2.86 s
- (D) 4.05 s

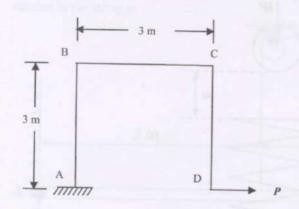
Q.20 When a ball of weight W rests on a spring of constant k, it produces a static deflection of 3 cm. If the ball is now dropped from a height of h = 30 cm as shown in the figure, the spring will get compressed by



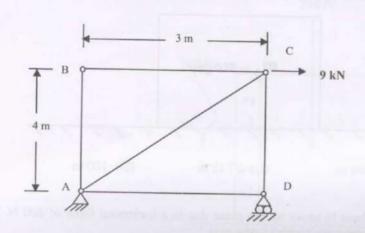
(A)2.45 cm

- (B) 14.07 cm
- (C) 16.75 cm
- (D) 33 cm
- Q.21 A bullet of mass $m_1 = 20$ gm fired horizontally with a velocity of v = 200 m/s hits a wooden block of mass $m_2 = 500$ gm (take g = 9.8 m/s²) resting on a horizontal plane as shown in the figure and the bullet remains embedded in the block after the impact. If the coefficient of friction between the surfaces in contact remains constant at 0.3, the distance the block will move before coming to rest is

Q.22 A block of weight 500 N is about to move up the plane due to a horizontal force of 800 N. The coefficient of static friction between the contact surfaces is

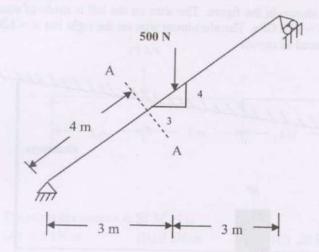

(A) 0.15

(B) 0.25


(C) 0.33

(D) 0.53

Q.23 The horizontal displacement at D of the frame shown in figure is (neglect axial strain energy and assume EI to be constant throughout)



- (A) $\frac{6P}{EI}$
- (B) $\frac{9P}{EI}$
- (C) $\frac{45 P}{EI}$
- (D) $\frac{729 P}{EI}$
- Q.24 The forces in the members of a truss ABCD as shown in the figure are (T stands for tension and C for compression)

- (A) $F_{AB} = 12 \text{ kN(T)}, F_{CD} = 12 \text{ kN(C)}, F_{AD} = 9 \text{ kN(T)}, F_{BC} = 9 \text{ kN(T)}, F_{AC} = 0$
- (B) $F_{BC} = 0$; $F_{AC} = 15 \text{ kN(T)}$; $F_{CD} = 12 \text{ kN(C)}$; $F_{AD} = 9 \text{ kN(T)}$; $F_{AB} = 12 \text{ kN(T)}$
- (C) $F_{BC} = 0$; $F_{AD} = 0$; $F_{AC} = 15 \text{ kN(T)}$; $F_{CD} = 12 \text{ kN(C)}$; $F_{AB} = 12 \text{ kN(C)}$
- (D) $F_{\scriptscriptstyle AB} = F_{\scriptscriptstyle BC} = F_{\scriptscriptstyle AD} = 0$; $F_{\scriptscriptstyle AC} = 15\,\mathrm{kN(T)}$; $F_{\scriptscriptstyle CD} = 12\,\mathrm{kN(C)}$

The axial force, shear force and bending moment at section A-A of beam shown in figure are respectively

- (A) -400 N, 150 N, 600 N.m
- (C) 0, 250 N, 1000 N.m

- (B) 400 N, 0 N, 600 N.m
- (D) -400 N,310 N, 1240 N.m
- The slope and deflection at the free end of a variable cross section cantilever beam subjected to a Q.26 bending moment at the free end as shown in the figure is

- (A) $\frac{2ML}{3EI}$, $\frac{5ML^2}{18EI}$ (B) $\frac{ML}{EI}$, $\frac{ML^2}{2EI}$ (C) $\frac{ML}{1.5EI}$

- The maximum compressive load that can be applied on a hinged-hinged column of cross-section Q.27 $20 \text{mm} \times 10 \text{mm}$ and length 2000 mm is (allowable compressive stress = 250 MPa; E = 210 GPa)
 - (A) 0.86 kN
- (B) 3.45 kN
- (C) 25 kN
- (D) 50 kN
- A lift originally moving downwards at 10 m/s is brought to rest with a constant retardation in a Q.28 distance of 25m. The force with which the feet of a passenger of mass 80 kg (take $g = 9.8 \text{ m/s}^2$) press downwards on the floor of the lift is
 - (A) 160 N
- (B) 784 N
- (C) 944 N
- (D) 1000 N

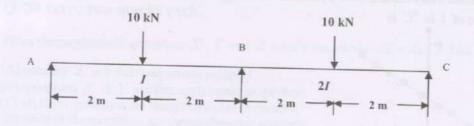
Common Data Questions

Common Data for Questions 29 and 30:

Two wires are connected to a rigid bar as shown in the figure. The wire on the left is made of steel having an area of cross section $A = 60 \text{ mm}^2$ and E = 210 GPa. The aluminum wire on the right has $A = 120 \text{ m}^2$ and E = 70 GPa. The weight W = 100 kN is placed as shown

- Due to this loading, the vertical displacement of the rigid bar at the mid span under the load is
 - (A) 0.45 mm
- (B) 0.6 mm
- (C) 1.04 mm
- (D) 1.49 mm
- At what distance the weight W should be placed from the left wire so that the bar will remain 0.30 horizontal
 - (A) 100 mm
- (B) 200 mm
- (C) 350 mm
- (D) 500 mm

Linked Answer Questions: Q.31 to Q.34 carry two marks each.


Statement for Linked Answer Questions 31 and 32:

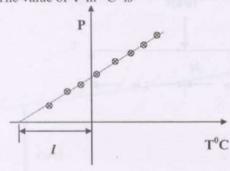
One end of a linear spring is attached to a fixed support and a mass of 2 kg hangs from it at the other end. A force of 4 N causes a displacement of 0.02m. The mass is pulled down a distance of 0.04 m from its static equilibrium position and released with zero velocity

- The natural frequency of vibration is
 - (A) 1 rad/s
- (B) 1.59 rad/s
- (C) 5 rad/s
- (D) 10 rad/s
- The magnitude of velocity when the body has moved half way towards the static equilibrium position from its initial position is
 - (A) 0.212 m/s
- (B) 0.346 m/s
- (C) 0.4 m/s
- (D) 1.0 m/s

Statement for Linked Answer Questions 33 and 34:

A two span variable cross section simply supported beam ABC is carrying two concentrated loads as shown in the figure.

- Q.33 The support moment at ${\bf B}(M_B)$ is
 - (A) -7.5 kN.m
- (B) 0 kN.m
- (C) 20 kN.m
- (D) 80 kN.m


- Q.34 The support reactions are
 - (A) $R_A = R_C = 3.125 \,\mathrm{kN}$, $R_B = 13.75 \,\mathrm{kN}$. (B) $R_A = R_C = R_B = 6.67 \,\mathrm{kN}$
 - (C) $R_A = R_C = 5 \text{ kN}$, $R_B = 10 \text{ kN}$.
- (D) $R_A = R_C = 10 \text{ kN}$, $R_B = 0$.

END OF SECTION - F

G: THERMODYNAMICS

Q. 1 - Q. 8 carry one mark each.

Q.1 Experimental data obtained from a constant-volume-gas-thermometer is shown in the figure below. The value of I in ${}^{0}C$ is

- (A) 273.15
- (B) 1.0
- (C) -100
- (D) 273.15
- Q.2 At constant temperature, pressure of an incompressible fluid is changed from 400 kPa to 4 MPa. Which of the following set of thermodynamic properties remain unchanged during the process:

 (u is specific internal energy, v is specific volume, h is specific enthalpy and s is specific entropy)
 - (A) u, v, h
- (B) u.s.h
- (C) u, v, s
- (D) v,s,h
- Q.3 The densities of water and ice at 0 °C are 1000 kg/m³ and 900 kg/m³, respectively. If ice at 0 °C is allowed to melt into water at the same temperature, then
 - (A) work is done by ice on the surrounding atmosphere.
 - (B) work is done by the atmosphere on ice.
 - (C) there is no work interaction.
 - (D) nothing can be said about the work interaction.
- Q.4 The work done in an isentropic process involving ideal gas is equal to
 - (A) $-\int VdP$

(B) Zero

(C) $\frac{P_1V_1 - P_2V_2}{\gamma - 1}$

- (D) $RT \ln \left(\frac{V_2}{V_1} \right)$
- Q.5 Thermal efficiency of a Diesel cycle can be increased by
 - (A) increasing both compression ratio and cut-off ratio.
 - (B) decreasing both compression ratio and cut-off ratio.
 - (C) decreasing compression ratio and increasing cut-off ratio.
 - (D) increasing compression ratio and decreasing cut-off ratio.
- Q.6 In a throttling process
 - (A) temperature always remains unchanged.
 - (B) temperature always increases.
 - (C) temperature always decreases.
 - (D) temperature may increase, decrease or remain unchanged.
- Q.7 The COP of a Carnot heat pump operating between -3 °C and 27 °C is
 - (A) 10
- (B) 0.1
- (C) 9.0
- (D) 1.0

- 0.8 If the moist air is heated at a constant pressure
 - (A) the specific humidity changes.
- (B) the relative humidity does not change.
- (C) the relative humidity decreases.
- (D) the relative humidity increases.

O. 9 to O. 30 carry two marks each.

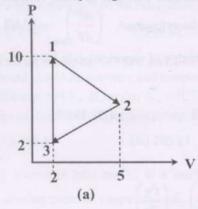
- Three thermodynamic quantities X, Y and Z satisfy the relation dZ = XdY + YdX. This implies, 0.9
 - (A) quantity Z is a thermodynamic property.
 - (B) quantities X & Y are thermodynamic properties.
 - (C) all three quantities are thermodynamic properties.
 - (D) none of the quantities are thermodynamic property.
- In a constant temperature process 70 moles of an ideal gas at temperature 354 K attains a final volume $V_1 = 1$ m³. Work input during this process is 206 kJ. Initial volume V_1 of the gas approximately satisfies the following relation (e is the base of natural logarithm)

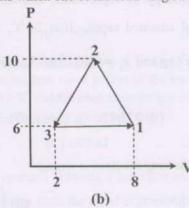
(A)
$$V_1 = V_2$$

(B)
$$V_1 = eV_2$$

(C)
$$ln(V_2/V_1) = 1$$

(B)
$$V_1 = eV_2$$
 (C) $\ln(V_2/V_1) = 1$ (D) $V_1 = \ln(V_2)$


An ideal gas at pressure P_0 and temperature T_0 undergoes a reversible isothermal compression and Q.11 attains a pressure P_1 . The characteristic gas constant is R. Net heat transferred during this process


(B)
$$RT_0 \ln (P_1/P_0)$$

$$(C) - RT_0 \ln \left(P_1 / P_0 \right)$$

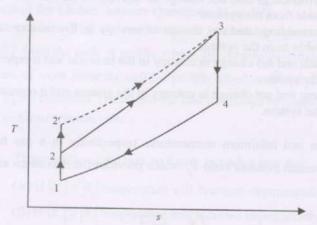
(B)
$$RT_0 \ln (P_1/P_0)$$
 (C) $-RT_0 \ln (P_1/P_0)$ (D) $RT_0 (P_0-P_1)/P_0$

- Q.12 A person starts a 60 W table fan in an insulated room of volume 86.4 m3. The person expects to cool the room from 32 °C (pressure = 100 kPa) and allows the fan to rotate for 4 hours. If the specific heat at constant volume of the room air is 0.718 kJ/kg K and characteristic gas constant is 287 kJ/kg K, after 4 hours, the person will find that the room is
 - (A) hotter by approximately 12 °C.
 - (B) cooler by approximately 10 °C.
 - (C) at the same temperature.
 - (D) hotter by approximately 8 °C.
- Consider the cycles given below and state which one of the following statements is true Q.13

- (A) In both (a) and (b) net work done is +12 units.
- (B) In (b) net work done is more since in (a) no work is produced by the constant volume process.
- (C) Magnitudes of net work produced in both (a) and (b) are 12 units but their signs are opposite.
- (D) Magnitudes of net work produced in both (a) and (b) are different.

- Steam of quality 0.98 is present in two separate containers A and B at 300 kPa and 200 kPa, 0.14 respectively. Specific volumes of steam in containers A and B initially are v_{A1} and v_{B1} , respectively. Steam condenses at a constant pressure in such a way that the final quality of steam in both the containers is 0.01 and specific volumes of steam in containers A and B are v_{42} and v_{82} , respectively. Which one of the following statements is true?
 - (A) $v_{A1} > v_{B1} & v_{A2} > v_{B2}$
 - (B) $v_{A1} < v_{B1} & v_{A2} < v_{B2}$
 - (C) $v_{A1} > v_{B1} & v_{A2} < v_{B2}$
 - (D) $v_{A1} < v_{B1} & v_{A2} > v_{B3}$
- The approximate entropy change, when 10 kg of an ideal gas having specific heat at constant volume $c_v = \frac{5R}{2}$ (given, R=287 J/ kg K) is taken from an initial state of 100 kPa and 300 K to the final state of 200 kPa and 500 K, is
 - (A) 9.1
- (B) 3.14
- (C) 91.0
- (D) 0.314
- In a thermal power plant operating on a Rankine cycle, steam having enthalpy h = 2995.1 kJ/kgand entropy $s = 6.5422 \text{ kJ/ kg}^{\circ}\text{C}$ is produced at 3 MPa and 300 °C and is fed to a turbine where it expands to a condenser pressure of 5 kPa , where $h_f = 137.77$ kJ/ kg , $h_g = 2561.6$ kJ/ kg , $s_f = 0.4763$ kJ/ kg 0 C and $s_g = 8.3960$ kJ/ kg 0 C. At the entrance to the condenser, the quality and enthalpy of steam, respectively are approximately:
 - (A) 0.89, 1994.42

- (B) 0.68, 1795.67 (C) 0.79, 2055.02 (D) 0.77, 2004.12
- Q.17 For a refrigerant, the slope $\left(\frac{dP}{dT}\right)_{ref}$ of the saturation curve on a P-T diagram is a function of the temperature, the enthalpy of vaporization and the difference between specific volumes of the saturated liquid and saturated vapor. If at 20 °C, for the refrigerant, $\left(\frac{dP}{dT}\right)$ = 17.69 kPa/K, $v_f = 0.0008157 \,\mathrm{m}^3/\,\mathrm{kg}$ and $v_g = 0.0358 \,\mathrm{m}^3/\,\mathrm{kg}$, the enthalpy of vaporization in kJ/ kg at 20 $^{0}\mathrm{C}$ is approximately:
 - (A) 12.38
- (B) 273.77
- (C) 353.8
- (D) 181.5


- Which one of the following relations is wrong:
 - (A) $\left(\frac{\partial T}{\partial v}\right)_{s} = \left(\frac{\partial P}{\partial s}\right)_{v}$

(B) $\left(\frac{\partial T}{\partial P}\right)_{s} = \left(\frac{\partial v}{\partial s}\right)_{p}$

(C) $\left(\frac{\partial P}{\partial T}\right)_{vv} = \left(\frac{\partial s}{\partial v}\right)_{vv}$

(D) $\left(\frac{\partial s}{\partial P}\right) = -\left(\frac{\partial v}{\partial T}\right)$

For the same maximum temperature and pressure, an Otto cycle and a Diesel cycle are shown on the same T-s diagram in the following figure. Which one of the following is correct:

- (A) 1-2-3-4 is an Otto cycle and 2-3 is an isobaric process.
- (B) 1-2'-3-4 is an Otto cycle and 2'-3 is an isobaric process.
- (C) 1-2-3-4 is an Otto cycle and 2-3 is an isochoric process.
- (D) 1-2'-3-4 is a Diesel cycle and 2'-3 is an isochoric process.
- A Carnot engine having efficiency $\eta = 0.5$ drives a Carnot refrigerator with COP = 4. The energy absorbed by the refrigerator from the cold body for each kJ of energy absorbed from the source by the Carnot engine is
 - (A) 2 kJ
- (B) 2.4 kJ
- (C) 3 kJ
- (D) 4 kJ
- It is proposed that the solar energy be used to heat a large collector plate. The energy in turn be transferred as heat to a fluid within a heat engine, and the engine would reject energy as heat to the atmosphere. Experiments indicate that 0.5 kW/ m2 of energy can be collected at the operating temperature of the plate and the maximum efficiency of the engine is 0.2. The minimum collector area that would be required for a plant to produce 1 kW of useful shaft power is
 - (A) 1 m²
- (B) 10 m²
- (C) 100 m^2 (D) 1000 m^2
- A reversible engine operates between temperatures $T_1 = 1000 \text{ K}$ and $T_2 = 400 \text{ K}$. The engine drives a refrigerator which operates between T2 = 400 K and T3 = 200 K. The energy transfer to the engine is 2000 kJ and the net work output of the combined engine and refrigerator is 300 kJ. The energy transferred to the refrigerant is
 - (A) 9 kJ
- (B) 90 kJ
- (C) 900 kJ
- (D) 9000 kJ
- Two kg of air at 500 kPa and 370 K expands adiabatically in a closed system until its volume is doubled and its pressure and temperature become equal to that of the surroundings, which is at 100 kPa and 300 K. If for air, $C_v = 0.7 \text{ kJ/kg K}$ and the characteristic gas constant R = 0.287 kJ/kg K, the maximum work for this process is approximately given by
 - (A) 105 kJ
- (B) 205 kJ
- (C) 305 kJ
- (D) 405 kJ
- Q.24 A reversible heat engine in a satellite operates between a hot reservoir at temperature T_1 and a radiating panel at temperature T_2 . Radiation from the panel is proportional to the area A and T^4 . The constant of proportionality is the Stefan-Boltzmann constant σ . The ratio of the work output W to the temperature difference $(T_1 - T_2)$ is
 - (A) σAT
- (B) $\sigma A T^2$ (C) $\sigma A T_2^3$
- (D) $\sigma A T_2^4$

- Q.25 Irreversibility of a given process in a system is equal to
 - (A) product of temperature of the surroundings and net change in entropy in the universe and it represents loss in total work available from the system.
 - (B) product of temperature of the surroundings and net change in entropy in the universe and it represents gain in total work available from the system.
 - (C) product of temperature of the system and net change in entropy in the universe and it represents loss in total work available from the system.
 - (D) product of temperature of the system and net change in entropy in the system and it represents loss in total work available from the system.
- T_{\max} and T_{\min} represent the maximum and minimum temperatures respectively in a gas turbine working on a Brayton cycle. The optimum pressure ratio r_n which provides the maximum amount of work is given by

(A)
$$r_p = \left(\frac{T_{\text{max}}}{T_{\text{min}}}\right)^{\frac{2\gamma-1}{\gamma}}$$

(B)
$$r_p = \left(\frac{T_{\text{max}}}{T_{\text{min}}}\right)^{\frac{\gamma}{2\gamma - 1}}$$

(C)
$$r_p = \left(\frac{T_{\min}}{T_{\max}}\right)^{\frac{\gamma}{2\gamma - 1}}$$

(D)
$$r_p = \left(\frac{T_{\min}}{T_{\max}}\right)^{\frac{2\gamma - 1}{\gamma}}$$

- Q.27 A heat engine operates between three reservoirs: R₁ at 550 K, R₂ at 450 K and R₃ at 350 K. For every cycle, the engine accepts 100 kJ from R_1 and rejects 60 kJ into R_2 and 30 kJ into R_3 . The engine efficiency is
 - (A) 0.10
- (B) 0.20
- (C) 0.30 (D) can not be defined
- Carbon tetrachloride boils at 76 °C at 101 kPa. The latent heat of vaporization of carbon tetrachloride is 195 kJ/kg and for this, the characteristic gas constant is 0.055 kJ/kg K. The boiling point of carbon tetrachloride at 202 kPa is
 - (A) 274.54 K

- (B) 374.54 K (C) 474.54 K (D) 574.54 K

Common Data Questions

Common Data for Questions 29 and 30:

Steam at 0.6181 MPa and 160 °C (saturated) enters a steady flow device with a velocity of 50 m/s and enthalpy 2756.7 kJ/kg. It leaves at a pressure of 0.1 MPa with a velocity of 600 m/s and enthalpy h_e . The device is perfectly insulated and does not do any work on the surroundings. Neither does it receive any work input. Use the following data table:

Pressure	Temperature	Specific	enthalpy	Specific entropy	
P (bar)	(°C)	h_f (kJ/kg)	h_g (kJ/kg)	s_f (kJ/kg K)	s _g (kJ/kg K)
1.5	111.37	467.13	2693.4	1.4336	7.2234

- The quality of the steam at the outlet of the device is Q.29
 - (A) 0.548
- (B) 0.648
- (C) 0.748
- (D) 0.948

- The above mentioned device is a 0.30
 - (A) turbine
- (B) compressor
- (C) nozzle
- (D) diffuser

48/64

Linked Answer Questions: Q.31 to Q.34 carry two marks each.

Statement for Linked Answer Questions 31 and 32:

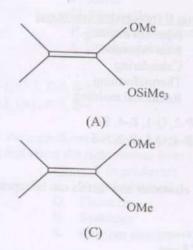
A tank contains 9 kg of liquid water at an initial temperature T_0 °C. A coil removes heat at the rate of $\dot{Q} = k_1 T$ from the tank. A paddle wheel, by constantly stirring, maintains uniform temperature in the tank. The rate of work input through the paddle wheel is $\dot{W} = k_2 T$. Temperature, T is in degree centigrade and k_1 & k_2 are constants. (Note that the rate of change in internal energy inside the tank will be a balance of work and heat transfer rates.)

- Q.31 Temperature of the tank will vary in such a way that
 - (A) if $|k_2| > |k_1|$ temperature will decrease exponentially
 - (B) if $\left|k_{2}\right| > \left|k_{1}\right|$ temperature will increase exponentially
 - (C) if $\left|k_{2}\right| < \left|k_{1}\right|$ temperature will increase exponentially
 - (D) if $\left|k_{2}\right| > \left|k_{1}\right|$ temperature will decrease linearly
- Q.32 If $T_0 = 80$ °C, $|k_1| = 0.1$, $|k_2| = 0.01$ and specific heat of the liquid = 1.0, the temperature of the tank after 1 minute will be
 - (A) 43.9 °C
- (B) 38.4 °C
- (C) 166.6 °C
- (D) 145.7 °C

Statement for Linked Answer Questions 33 and 34:

Air enters a gas turbine at 1.0135 MPa, 1000 K at the rate of 1 kg/s and exits at 101.35 kPa and 600 K. Neglect the changes in potential energy and kinetic energy and assume that air is an ideal gas with R = 0.287 kJ/kg K, $c_p=1.005 \text{ kJ/kg K}$.

- Q.33 The net power output of the gas turbine is
 - (A) 102 kW
- (B) 200 kW
- (C) 301 kW
- (D) 402 kW
- Q.34 If for the isentropic process $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}$ and $\gamma = 1.4$, the isentropic efficiency of the turbine is
 - (A) 63%
- (B) 73%
- (C) 83%
- (D) 93%


END OF SECTION - G

H : POLYMER SCIENCE AND ENGINEERING

Q. 1 - Q. 8 carry one mark each	Q.	1 -	Q.	8	carry	one	mark	each.
---------------------------------	----	-----	----	---	-------	-----	------	-------

Q.1	Among the polym to unity is	erzation methods listed	below, the one that is lil	kely to give a polydispersity clos
	(A) anionic polym (C) condensation p		(B) cationic polyr (D) radical polym	
Q.2	The end-groups in initiator system is	a polymer sample prepa	ared by using ROOH/Fe	2+ (where R = alkyl) as the
	(A) Fe ²⁺	(B) -OR	(C) -OH	(D) Fe ³⁺
Q.3	Most polymers exl	nibit Newtonian behavio	our at	
	(A) high temperate (C) high molecular	ire	(B) low shear rate (D) low filler cont	
Q.4	The shear rate of a	typical injection moldir	ng process is	
	(A) 1 s ⁻¹	(B) 10 s ⁻¹	(C) 100 s ⁻¹	(D) 1000 s ⁻¹
Q.5	Which of the follo	wing monomers is used	in the synthesis of poly(vinyl alcohol)
	(A) CH ₃ CH ₂ OH (C) CH ₂ =CH-O-C((B) CH ₂ =CH(OH) (D) CH ₂ =CH-CO ₂	
Q.6	The extension ratio	of an elastomer deform	ned to 10 times is	
	(A) 2	(B) 5	(C) 9	(D) 11
2.7	Most plausible valu	ne for the Gibb's free en	ergy change for a miscil	ble blend of two polymers is
	(A) +5 kJmol ⁻¹	(B) +1 kJmol ⁻¹	(C) 0 kJmol ⁻¹	(D) -0.01 kJmol ⁻¹
Q.8	The glass transition	temperature of raw nate	ural rubber is	
	(A) -70 °C	(B) -10 °C	(C) 0 °C	(D) +30 °C
. 9 to	o Q.30 carry two	marks each.		
2.9	memacrylate (WIVIA	onitrile (AIBN) is an ini A). When the concentratinged, the rate of propag	ion of AIBN is doubled	dical polymerization of methyl maintaining MMA
	(A) is doubled (C) is reduced by ha		(B) increases by a f (D) decreases by a	
0.10	A polymer sample is respectively. The wa	nas 3 molecules with mo eight average molecular	elecular weights 1x10 ⁵ , 2 weight of the sample is	2x10 ⁵ and 3x10 ⁵ gmol ⁻¹
	(A) 2.99x10 ⁵ gmol ⁻¹ (C) 2.33x10 ⁵ gmol ⁻¹		(B) 2.66x10 ⁵ gmol ⁻ (D) 2.00x10 ⁵ gmol ⁻	The second second

Which of the following reagents is capable of effecting Group Transfer polymerization with methacrylates?

- OMe Me₁Si OMe (B) Me3Six OMe Me₃Si OMe (D)
- For the copolymerization of MMA with vinyl chloride, the monomer reactivity ratios were found to 0.12 be 10 and 0.1 respectively. The resulting polymer is most likely to be
 - (A) an alternating copolymer

(B) an ideal copolymer

(C) a block copolymer

- (D) a branched copolymer
- Match the characterization techniques listed in Group I with the applications listed in Group II and 0.13 select the correct answer from (A), (B), (C) or (D)

Group I (Technique) Group II (Application) P. X-ray Diffraction 1. Functional Groups Q. Differential Thermal Analysis 2. Crystallinity R. Infrared Spectroscopy 3. Morphology S. Microscopy 4. Enthalpy 5. Power Factor (A) P-5, Q-4, R-3, S-2 (B) P-2, Q-3, R-1, S-5 (C) P-3, Q-2, R-4, S-5 (D) P-2, Q-4, R-1, S-3

- For a polymer, viscosity at 50 °C and at 80 °C was found to be 2.00 Pa s and 1.00 Pa s respectively. 0.14 The value of viscosity at 60 °C is
 - (A) 1.65 Pa. s
- (B) 1.55 Pa. s
- (C) 1.45 Pa. s
- (D) 1.35 Pa. s
- For a viscoelastic material behaving as Maxwell model, the modulus at its relaxation time under 0.15 constant strain reduces to
 - (A) 36.8 % of the initial value
 - (B) 63.2 % of the initial value
 - (C) 66.7 % of the initial value
 - (D) 33.3 % of the initial value
- The capacity of an extruder can be maximized by a combination of Q.16
 - (A) higher barrel diameter; higher screw diameter; higher helix angle; higher rpm
 - (B) higher barrel diameter; higher screw diameter; higher helix angle; lower rpm
 - (C) higher barrel diameter; higher screw diameter; lower helix angle; higher rpm
 - (D) higher barrel diameter; lower screw diameter; higher helix angle; higher rpm

Q.17 Match the raw materials in Group I with the polymer processing operation in Group II and select the correct answer from (A), (B), (C) or (D).

Group I (raw material) Group II (processing operation) P. polyethylene granules Injection molding O. polycarbonate granules 2. Film extrusion R. polystyrene sheet 3. Calendering S. plasticized poly(vinyl chloride) 4. Thermoforming Rotational molding 5. (A) P-1, Q-2, R-3, S-4 (B) P-2, O-1, R-4, S-3 (C) P-2, Q-5, R-3, S-1 (D) P-4, Q-3, R-2, S-5

Q.18 The difference in the stress-strain curve for plastics, elastomer and metals can be represented by: $(M = Modulus; \epsilon = elongation at break)$

```
(A) M_{metal} \le M_{plastic} \le M_{elastomer} and \epsilon_{metal} > \epsilon_{plastic} > \epsilon_{elastomer} (B) M_{plastic} \le M_{elastomer} \le M_{metal} and \epsilon_{plastic} > \epsilon_{elastomer} \ge \epsilon_{metal} (C) M_{elastomer} \le M_{plastic} \le M_{metal} and \epsilon_{elastomer} > \epsilon_{plastic} \ge \epsilon_{metal} (D) M_{plastic} \le M_{metal} \le M_{elastomer} and \epsilon_{plastic} \ge \epsilon_{metal} \ge \epsilon_{elastomer}
```

Q.19 Match the following rubbers in Group I with their applications in Group II and select the correct answer from (A), (B), (C) or (D).

Group I (rubbers)		Gr	oup II (applications)
P.	Butyl rubber	1.	Gaskets in chemical plants
Q.	Fluorocarbon elastomer	2.	Petrol hose
R.	Natural rubber	3.	Hand gloves
S.	Nitrile rubber	4.	Roofing membrane
		5.	Tire inner liner
Q-1	, R-3, S-2		(B) P-1, Q-3, R-2, S-5
Q-3	, R-1, S-4		(D) P-3, Q-5, R-1, S-4

Q.20 A carbon fiber-epoxy bar of dimensions (0.5m x 0.04m x 0.04m) gave a breaking load of 784N in a three point bending test. The flexural strength of the material is

(C) 0.3 GPa

(D) 108.1 GPa

Q.21 Match the polymers in Group I with their crystalline melting point (m. p.) in Group II and select the right answer from (A), (B), (C) or (D).

Group I (polymers)

Group II (m. p., *C)

P. Nylon66	1. 108
Q. PBT	2. 320
R. PP	3. 264
S. LDPE	4. 165
	5. 220
(A) P-1, Q-3, R-5, S-2	(B) P-3, Q-4, R-2, S-5
(C) P-3, Q-5, R-4, S-1	(D) P-5, Q-1, R-3, S-4

(B) 9.2 MPa

(A) P-5, (C) P-2,

(A) 15.8 MPa

Q.22 Match the additives listed in Group I below with their function listed in Group II and select the right answer from (A), (B), (C) or (D).

Group I (additives)	Group II (function)
P. Sulfur	Age resistor
Q. Zinc oxide	2. Accelerator activator
R. Paraphenylene diamine	Vulcanizing agent
S. Dioctyl phthalate	4. Plasticizer
	5. Accelerator
(A) P-1, Q-3, R-4, S-5	(B) P-3, Q-2, R-1, S-4
(C) P-3, Q-1, R-5, S-4	(D) P-2, Q-4, R-5, S-1

Q.23 Match the ingredients in Group I with their amount in parts by weight in Group II in a typical recipe and select the right answer from (A), (B), (C) or (D)

Group I (ingredients)	Group II (parts by weight)		
P. Polyvinylchloride	1. 0.5		
Q. Plasticizer	2. 40		
R. Stabilizer	3. 3		
S. Calcium stearate	4. 100		
(A) P-1, Q-2, R-3, S-4	(B) P-4, Q-3, R-2, S-1		
(C) P-2, Q-3, R-1, S-4	(D) P-4, O-2, R-3, S-1		

Q.24 The heat flow across the thickness to the opposite surface of a plastic slab of dimensions 0.1m x 0.1m x 0.05m is 19W. If the temperature difference between the surface of the slab is 10K, the thermal conductivity of the material will be

Q.25 A miscible polymer blend consisting of 60% of polymer X ($T_g = 208$ °C) and 40% of polymer Y ($T_g = 100$ °C) will show a glass transition temperature in the range of

Q.27 The notched Izod impact strength of acrylonitrile-butadiene-styrene polymer(ABS), polypropylene (PP), polycarbonate (PC) and phenol-formaldehyde (PF) resin follows the order

Q.28 The properties of three polymers are as follows:

	Polymer X	Polymer Y	Polymer Z
Density (kgm ⁻³)	920	1130	900
Heat Distortion Temp. (°C)	40	110	55
Tensile strength (MPa)	10	85	35
Elongation at break (%)	600	200	400

Which of the following is true?

(A) Polymer X is Commodity and Polymer Z is Engineering Plastic

(B) Polymer Y is Commodity and Polymer X is Engineering Plastic

(C) Polymer Z is Commodity and Polymer Y is Engineering Plastic

(D) Polymer Y is Commodity and Polymer Z is Engineering Plastic

0.26

Common Data Questions

Common Data for Questions 29 and 30:

For a polymer which follows the Mark-Houwink equation, the various parameters determined were as follows:

 $K = 1.2 \times 10^{-4}$; $[\eta] = 2.4$; a = 0.76; Huggins' constant = 0.33; concentration, $c = 0.3 \text{ gdL}^{-1}$

Q.29 The molecular weight of the polymer is

(A) 4.5×10^5

(B) 6.1×10^4

(C) 3.2×10^6

(D) 7.9 x 10⁵

Q.30 The specific viscosity of the above polymer is

(A) 0.73

(B) 1.12

(C) 0.89

(D) 2.30

Linked Answer Questions: Q.31 to Q.34 carry two marks each.

Statement for Linked Answer Questions 31 and 32:

Consider step growth polymerization of two bifunctional monomers with a monomer ratio of 0.99 and the number average degree of polymerization of 66.8

Q.31 The extent of reaction will be

(A) 0.90

(B) 0.95

(C) 0.99

(D) 1.00

Q.32 The polydispersity index at stoichiometric conditions would be

(A) 1.90

(B) 1.95

(C) 1.85

(D) 1.99

Statement for Linked Answer Questions 33 and 34:

A polymer composite of mica filled polypropylene contains 60% polymer by mass.

Tensile elastic modulus of polypropylene = 23 MPa

Tensile elastic modulus of mica = 30 GPa

Density of polypropylene = 900 kgm⁻³

Density of mica = 2800 kgm⁻³

Q.33 The volume % of mica in the composite is

(A) 25.95

(B) 17.60

(C) 14.83

(D) 39.27

Q.34 The modulus of elasticity of the composite is

(A) 12.8 GPa

(B) 20.3 GPa

(C) 5.3 GPa

(D) 31.7 GPa

END OF SECTION - H

I : FOOD TECHNOLOGY

Q. 1 - Q. 8 carry one mark each.

- The major protein in corn is 0.1
 - (A) Oryzenin
- (B) Glutenin
- (C) Zein
- (D) Hordenin

- Which of the following is NOT a reducing sugar? Q.2
 - (A) Lactose
- (B) Mannose
- (C) Maltose
- (D) Sucrose
- Which of the following is an intrinsic factor influencing microbial growth in food? Q.3
 - (A) Temperature
- (B) Relative humidity
- (C) Nutrients
- (D) Gas composition
- Which of the following combination of starter cultures is mostly used for the production of Q.4
 - (A) Lactobacillus casei and Lactobacillus delbrueckii
 - (B) Lactobacillus delbrueckii and Streptococcus thermophilus
 - (C) Lactobacillus acidophilus and Leuconostoc mesenteroides
 - (D) Streptococcus thermophilus and Leuconostoc mesenteroides
- 0.5 Potassium bromate is used to improve the gluten quality of wheat dough by increasing
 - (A) protein-protein ester linkages
 - (B) protein-protein disulphide linkages
 - (C) protein-protein interaction with large number of H-bonds
 - (D) protein-starch interaction with large number of H-bonds
- 0.6 Which of the following substances is NOT a Class I preservative in food

 - (A) Vinegar (B) Sodium benzoate (C) Vegetable oils
- (D) Citric acid
- Saturated steam at temperature T_s (°C) flows through a pipe and atmospheric air flows over the 0.7 outer surface of the pipe. If the temperature of the air has increased from T_i to T_o , the effectiveness of the heat exchange can be expressed as
 - (A) $\frac{T_s T_o}{T_s T_i}$

(B) $\frac{T_s - T_i}{T_s - T_o}$

- Convective mass transfer coefficient of water vapour diffusing from a water surface to air depends Q.8
 - (A) velocity of air

(B) viscosity of water vapour

(C) density of water vapour

(D) specific heat of water vapour

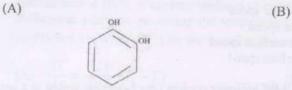
Q. 9 to Q.30 carry two marks each.

- Q.9 The following was obtained from an analysis of two oil samples A and B
 - (a) Iodine value of A is greater than iodine value of B
 - (b) Reichert Meissl value of A is less than Reichert Meissl value of B

Based on the above analysis, the following is the correct statement

- (A) Oil A is more unsaturated than oil B and has low molecular weight fatty acids
- (B) Oil A is less unsaturated than oil B and has low molecular weight fatty acids
- (C) Oil A is less unsaturated than oil B and has high molecular weight fatty acids
- (D) Oil A is more unsaturated than oil B and has high molecular weight fatty acids
- Q.10 Match the items in Group I with the most appropriate items in Group II

oup II
Biotin Flavour enhancer Goitre Sausage Anemia
9-5, Q-4, R-1, S-2 9-5, Q-2, R-1, S-4


- Q.11 Protein denaturation is a phenomenon of change in three dimensional structure of protein, and consequently an alteration of its functionality. Which of the following statement is NOT related to protein denaturation?
 - (A) Accessibility of proteolytic enzymes to peptide bonds increases
 - (B) Solubility and enzymatic activity of native protein decrease
 - (C) Intrinsic viscosity and optical rotation of the protein solution increase
 - (D) Increase in intrinsic viscosity through formation of amino acids by hydrolysis
- Q.12 If v is the reaction rate, V_{max} is the maximum reaction rate, K_m is the Michaelis-Menton constant and [S] is the substrate concentration, the Lineweaver-Burk plot for NO INHIBITION enzymatic reaction can be written as

(A)
$$\frac{1}{v} = \frac{K_m}{V_{max}} \frac{1}{[S]} + \frac{1}{V_{max}}$$
 (B) $\frac{1}{v} = \frac{K_m[S]}{V_{max}} + \frac{1}{V_{max}}$ (C) $\frac{1}{v} = \frac{K_m}{V_{max}} + \frac{[S]}{V_{max}}$ (D) $\frac{1}{v} = \frac{K_m}{V_{max}} + \frac{[S]^2}{V_{max}}$

Q.13 Match the items in Group I with the most appropriate items in Group II

Group I	Group II	
(P) PER (Q) Synerisis (R) Soyabean (S) Lemon	(1) Jelly (2) Essential amino aci (3) Neral (4) Saponin	
(A) P-2, Q-1, R-4, S-5 (C) P-2, Q-1, R-4, S-3	(5) Lycopene (B) P-2, Q-1, R-5, S-4 (D) P-5, Q-1, R-4, S-3	

Q.14 Which of the following is the structure of flavonol?

- The specific growth rate of Bacillus cereus in a food sample is 0.4 h⁻¹. Doubling time of the cell is
 - (A) 2.0 h
- (B) 1.73 h
- (C) 1.25 h
- (D) 1.0 h
- Match the items in Group I with the most appropriate items in Group II

Group I (P) Cheese (Q) Enterotoxin B (R) Bacteriocin (S) Milk ropiness	Group II (1) Hydrogen peroxide (2) Nisin (3) Propionibacterium (4) Alcaligenes (5) Staphylococcus aureus
(A) P-5, Q-1, R-2, S-4	(B) P-3, Q-1, R-5, S-4
(C) P-3, Q-5, R-2, S-4	(D) P-3, Q-5, R-2, S-1

- Q.17 Five grams of cheese was mixed with 45 ml of sterile diluent. Two successive dilutions of 1:100 each were made and one-tenth milliliter from the last dilution was plated onto each of two plates containing plate count agar (PCA) medium. Following incubation, 56 colonies were counted on one plate and 54 on the other. The average number of colony forming units (CFUs) per gram of cheese
 - (A) 5.5 x 10⁵

- (B) 5.5 x 10⁶
- (C) 5.5×10^7

Match the items in Group I with the most appropriate items in Group II Group I Group II

(P) Spore former (Q) Vinegar (R) Psychrotroph (S) Dysentery	(1) Listeria (2) Shigella (3) Lactobacillus (4) Bacillus (5) Acetobacter
(A) P-3, Q-5, R-4, S-2	(B) P-4, Q-5, R-1, S-2
(C) P-4, Q-5, R-1, S-3	(D) P-4, O-3, R-1, S-2

- Development of 'hot spot' in high moisture grain during storage in silo is due to 0.19
- (A) exothermic reaction between moisture and starch present in the endosperm of the grain
 - (B) microbial growth and respiration of grain
 - (C) heating of the silo wall during day and cooling during night
 - (D) exothermic reaction between the moisture present in endosperm and the oil in germ

- In modern rice mills, the two rubber rolls in the sheller rotate in opposite direction at the 0.20
 - (A) same rotational speed and different surface speed
 - (B) same rotational speed and same surface speed
 - (C) different rotational speed and different surface speed
 - (D) different rotational speed and same surface speed
- Two food materials A and B, each having 14% moisture content (dry basis) are stored in a constant Q.21 relative humidity chamber at 30°C for equilibration. The final moisture contents of A and B are 6% and 12% (both in dry basis), respectively. The final water activity a_{wA} of A and a_{wB} of B are related
 - (A) a_{wA} : $a_{\text{wB}} = 0.65:1$ (B) a_{wA} : $a_{\text{wB}} = 1:1$ (C) a_{wA} : $a_{\text{wB}} = 1:2$ (D) a_{wA} : $a_{\text{wB}} = 2:1$

- 0.22 Match the items in Group I with the most appropriate items in Group II

Group I

Group II

- (P) Disc centrifuge
- (Q) Multiple effect evaporator
- (R) UHT processing
- (S) Homogenization
- (1) Separation of solid phase in milk by coagulation
- (2) Aseptic packaging of milk
- (3) Separation of liquid phases in milk
- (4) Dispersion of one of the liquid phases in milk
- (5) Concentration of milk
- (A) P-3, Q-5, R-1, S-4
- (C) P-3, O-5, R-2, S-1

- (B) P-1, O-5, R-2, S-4
- (D) P-3, O-5, R-2, S-4
- Q.23 Rigor mortis in meat is due to
 - (A) glycolysis followed by formation of lactic acid
 - (B) binding of collagen and elastin
 - (C) action of cathepsin enzyme in meat
 - (D) binding of myosin and actin
- Following operations are adopted for cleaning in place (CIP) of equipment Q.24
 - P: Cold water rinse; Q: Hot water rinse; R: Alkali cleaning; S: Acid cleaning The correct sequence of CIP for equipment used in UHT processing of milk is

(A)
$$P \rightarrow Q \rightarrow R \rightarrow S \rightarrow P$$

(B)
$$P \rightarrow Q \rightarrow R \rightarrow Q \rightarrow S \rightarrow P$$

(D) $P \rightarrow Q \rightarrow S \rightarrow P$

(C)
$$P \rightarrow Q \rightarrow R \rightarrow P$$

(D)
$$P \rightarrow Q \rightarrow S \rightarrow F$$

- Following operations are adopted for refining of vegetable oils
 - P: Winterization; Q: Alkali refining; R: Steam deodorization; S: Bleaching; T: Degumming The correct sequence of operations for the refining is

(A)
$$P \rightarrow Q \rightarrow T \rightarrow R \rightarrow S$$

(B)
$$S \to R \to Q \to P \to T$$

(C)
$$T \rightarrow Q \rightarrow S \rightarrow R \rightarrow P$$

(D)
$$R \to T \to Q \to S \to P$$

A liquid having density ρ and viscosity μ flows under laminar condition through a circular pipe having diameter D and length L against a pressure drop of ΔP . Volume flow rate of the liquid through the pipe will be proportional to

(A)
$$\frac{D^4 \Delta P \rho}{\mu L}$$

(B)
$$\frac{D^2 \Delta P}{\rho \, \mu \, L}$$

(A)
$$\frac{D^4 \Delta P \ \rho}{\mu \ L}$$
 (B) $\frac{D^2 \Delta P}{\rho \ \mu \ L}$ (C) $\frac{D \ \Delta P \ \rho}{\mu \ L}$ (D) $\frac{D^4 \Delta P}{\mu \ L}$

(D)
$$\frac{D^4 \Delta P}{\mu L}$$

- Q.27 A liquid having mass M (kg), heat capacity C_p (J.kg⁻¹.°C⁻¹) is cooled in an agitated vessel having surface area A (m²). A cooling medium at temperature T_s (°C) is used for cooling the liquid. The differential equation governing the temperature change dT/dθ of liquid with overall heat transfer coefficient U (W.m⁻².°C⁻¹) for the vessel is given by
 - (A) $\frac{dT}{d\theta} = \frac{UA}{MC_p} (T_s T)$

(B) $-\frac{dT}{d\theta} = \frac{UA}{MC_p} (T_s - T)$

(C) $\frac{dT}{d\theta} = \frac{MC_p}{UA} (T_s - T)$

- (D) $-\frac{dT}{d\theta} = \frac{MC_p}{UA}(T_s T)$
- Q.28 Match the items in Group I with the most appropriate items in Group II

Group I

- (P) Freezing
- (Q) Fat globules movement in milk
- (R) Flow through packed bed
- (S) Boiling temperature
- (A) P-4, Q-1, R-3, S-5
- (C) P-2, Q-1, R-4, S-5

Group II

- (1) Stoke's law
- (2) Plank's equation
- (3) Ergun's equation
- (4) Hagen Poiseulli's equation
- (5) Raoult's law
- (B) P-2, Q-1, R-3, S-4
- (D) P-2, Q-1, R-3, S-5

Common Data Questions

Common Data for Questions 29 and 30:

Milk having heat capacity 3900 J.kg⁻¹.°C⁻¹ and density 1020 kg.m⁻³ is pressurized to 300 atmosphere gauge pressure and allowed to flow through a high pressure homogenizing valve at a rate of 60 liters per min. The diameter of the homogenizing valve through which the milk flows is 6 mm. (1 atmosphere = 101.3 kPa)

- Q.29 Temperature rise in milk will be
 - (A) 10.1 °C
- (B) 9.2 °C
- (C) 7.7°C
- (D) 6.1 °C

- Q.30 Height of the valve lift will be
 - (A) 0.06 mm
- (B) 0.11 mm
- (C) 0.16 mm
- (D) 0.22 mm

Linked Answer Questions: Q.31 to Q.34 carry two marks each.

Statement for Linked Answer Questions 31 and 32:

A medium acid food is sterilized at 100° C in a can to reduce the number of heat resistant organism ($D_{120} = 0.2 \text{ min}$; $z = 10^{\circ}$ C) from an initial count of 10000 per can to a probability of survival of 1 in million.

- Q.31 D₁₀₀ value of this organism is
 - (A) 0.4 min
- (B) 20 min
- (C) 4 min
- (D) 10 min

- Q.32 The total processing time is
 - (A) 100 min
- (B) 40 min
- (C) 200 min
- (D) 4 min

Statement for Linked Answer Questions 33 and 34:

Compressed air at 0.5 atmosphere gauge pressure and 30°C contains 0.01 kg water vapor per kg dry air. Molecular weight of dry air and water vapor are 28.9 and 18 kg.kmol⁻¹, respectively. Saturation vapor pressure of water at 30°C is 4.246 kPa absolute. (1 atmosphere = 101.3 kPa)

Partial pressure of water vapor inside the compressor is

(A) 2.15 kPa

(B) 2.40 kPa

(C) 3.12 kPa

(D) 3.51 kPa

Q.34 Relative humidity of air inside the compressor is

(A) 40.1%

(B) 49.8%

(C) 56.5%

(D) 57.6%

END OF SECTION - I